melt electrospinning
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 74)

H-INDEX

38
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Junjie Xiong ◽  
Han Wang ◽  
Xingzi Lan ◽  
Yaqi Wang ◽  
Zixu Wang ◽  
...  

Abstract Many strategies have been adopted to engineer bone-ligament interface, which is of great value to both the tissue regeneration and the mechanism understanding underlying interface regeneration. However, how to recapitulate the complexity and heterogeneity of the native bone-ligament interface including the structural, cellular and mechanical gradients is still challenging. In this work, a bioinspired grid-crimp micropattern fabricated by melt electrospinning writing (MEW) was proposed to mimic the native structure of bone-ligament interface. The printing strategy of crimped fiber micropattern was developed and the processing parameters were optimized, which were used to mimic the crimp structure of the collagen fibrils in ligament. The guidance effect of the crimp angle and fiber spacing on the orientation of fibroblasts was studied, and both of them showed different levels of cell alignment effect.. MEW grid micropatterns with different fiber spacings were fabricated as bone region. Both the alkaling phosphatase activity and calcium mineralization results demonstrated the higher osteoinductive ability of the MEW grid structures, especially for that with smaller fiber spacing. The combined grid-crimp micropatterns were applied for the co-culture of fibroblasts and osteoblasts. The results showed that more cells were observed to migrate into the in-between interface region for the pattern with smaller fiber spacing, suggested the faster migration speed of cells. Finally, a cylindrical triphasic scaffold was successfully generated by rolling the grid-crimp micropatterns up, showing both structural and mechanical similarity to the native bone-ligament interface. In summary, the proposed strategy is reliable to fabricate grid-crimp triphasic micropatterns with controllable structural parameters to mimic the native bone-to-ligament structure, and the generated 3D scaffold shows great potential for the further bone-ligament interface tissue engineering.


2021 ◽  
pp. 004051752110582
Author(s):  
Cheng Ge ◽  
Yuansheng Zheng ◽  
Kai Liu ◽  
Binjie Xin

In this study, the effect of the heating temperature of the spinneret on the melt electrospinning process under the condition of application of auxiliary heating was investigated, in a systematical and comprehensive way. The temperature distribution of the melt jet during the melt electrospinning process was simulated by finite element software in order to provide a good deal of insight into the experimental results. In addition, high-speed photography was adopted to capture images of jet formation and jet motion during the melt electrospinning process. The experimental results indicated that the cooling rate of the polypropylene jet decreases obviously under the condition of auxiliary heating; in addition, the higher spinneret temperature leads to greater drafting force, a drawing fiber drafting rate, and greater jet whipping motion, which is conducive to secondary drawing and refinement of the jet.


Author(s):  
Zungui Shao ◽  
Junyu Chen ◽  
Ling-jie Ke ◽  
Qingfeng Wang ◽  
Xiang Wang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 1208 (1) ◽  
pp. 012004
Author(s):  
Budimir Mijović ◽  
Josip Jelić ◽  
Petra Brać ◽  
Snježana Kirin

Abstract In the melt electrospinning technique, the polymer melt is stretched under high voltage and the cooled to form microfibers structures with a fibre diameter in the tens of micrometres range, although some studies have reported values ranging from hundreds of nanometres to hundreds of micrometres. In this respect, this technique has significance in the biomedical field, where tissue engineering scaffolds with bimodal (nano and micro) fibrous structures are preferred in regard to cell adhesion, spreading and infiltration to final tissue reconstruction. This paper gives a review of recently reported melt electrospinning devices, especially those based on the direct writing principle, and of their comparison with the new melt Spraybase electrospinning device. The Spraybase device provides high precision melt jet deposition into 2D and 3D programmed architectures, with versatile translation speeds of the collector plate in the X-Y and the melt head in the Z direction. The melt spun fibrous architectures are designed depending on the types of tissue cells used in scaffold development.


Author(s):  
Miguel Nuno Barbosa da Cunha ◽  
Rita Rynkevic ◽  
Maria Elisabete Teixeira da Silva ◽  
André Filipe Moreira da Silva Brandão ◽  
Jorge Lino Alves ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4699
Author(s):  
Lasse Christiansen ◽  
Leonid Gurevich ◽  
Deyong Wang ◽  
Peter Fojan

Increasingly advanced applications of polymer fibers are driving the demand for new, high-performance fiber types. One way to produce polymer fibers is by electrospinning from polymer solutions and melts. Polymer melt electrospinning produces fibers with small diameters through solvent-free processing and has applications within different fields, ranging from textile and construction, to the biotech and pharmaceutical industries. Modeling of the electrospinning process has been mainly limited to simulations of geometry-dependent electric field distributions. The associated large change in viscosity upon fiber formation and elongation is a key issue governing the electrospinning process, apart from other environmental factors. This paper investigates the melt electrospinning of aerogel-containing fibers and proposes a logistic viscosity model approach with parametric ramping in a finite element method (FEM) simulation. The formation of melt electrospun fibers is studied with regard to the spinning temperature and the distance to the collector. The formation of PET-Aerogel composite fibers by pneumatic transport is demonstrated, and the critical parameter is found to be the temperature of the gas phase. The experimental results form the basis for the electrospinning model, which is shown to reproduce the trend for the fiber diameter, both for polymer as well as polymer-aerogel composites.


2021 ◽  
Vol 38 (7) ◽  
pp. 529-535
Author(s):  
Jeong Hwa Kim ◽  
Gwang June Shin ◽  
Martin Byung-Guk Jun ◽  
Young Hun Jeong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document