Sound Waves, Acoustical Energy, and the Perception of Loudness

Author(s):  
Juan G. Roederer
2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Kuan Chen ◽  
Mohammed Albonaeem ◽  
Yeongmin Kim ◽  
Nam Jin Kim ◽  
Sang Hoon Lim ◽  
...  

A thermal-to-acoustic energy converter (TAC) was developed and tested to produce sound waves in the kilohertz range directly from solar energy. The converter consisted of a glass window and a small amount of steel wool in the shape of a disk sealed in an aluminum housing. A Fresnel lens and a chopper wheel with 60 holes in it were employed to generate a pulsed sunbeam of approximately 200 sun intensity as the heat source of the TAC. Various designs and techniques were tested to improve the sound amplitude and signal-to-noise ratio of the converter at high frequencies. Reduction in air volume, better cooling, and improvement in air tightness were found to be effective in enhancing the sound amplitude. A shockproof mount commonly used in radio studios to reduce microphone vibration was essential in noise reduction for the TAC at high chopper wheel rotations. The sound amplitude was found to rapidly decrease with the increase in pulse frequency of the sunbeam at low frequencies. The relationship between the decibel value and frequency of the generated sound waves was changed to linear for sunbeam frequencies above 1 kHz. This is the frequency at which the penetration of surface temperature fluctuations into the aluminum housing becomes comparable with the aluminum housing thickness. At a given frequency, the sound amplitude increased almost exponentially with the increase in solar flux intensity. To the best of our knowledge, the 3 kHz sound frequency measured in our experiments is by far the highest frequency produced by a solar-to-acoustical energy converter.


1894 ◽  
Vol 70 (25) ◽  
pp. 395-395
Author(s):  
M. Hopkins
Keyword(s):  

2000 ◽  
Author(s):  
S. Azadi ◽  
A. Afshari ◽  
D. Frazer

2009 ◽  
Vol 12 (6) ◽  
pp. 537-548
Author(s):  
Hamzeh M. Duwairi ◽  
Hazim M. Dwairi

2013 ◽  
Vol 38 (3) ◽  
pp. 335-350 ◽  
Author(s):  
Olexa Piddubniak ◽  
Nadia Piddubniak

Abstract The scattering of plane steady-state sound waves from a viscous fluid-filled thin cylindrical shell weak- ened by a long linear slit and submerged in an ideal fluid is studied. For the description of vibrations of elastic objects the Kirchhoff-Love shell-theory approximation is used. An exact solution of this problem is obtained in the form of series with cylindrical harmonics. The numerical analysis is carried out for a steel shell filled with oil and immersed in seawater. The modules and phases of the scattering amplitudes versus the dimensionless wavenumber of the incident sound wave as well as directivity patterns of the scattered field are investigated taking into consideration the orientation of the slit on the elastic shell surface. The plots obtained show a considerable influence of the slit and viscous fluid filler on the diffraction process.


Sign in / Sign up

Export Citation Format

Share Document