The field of definition of a variety

Author(s):  
André Weil
Author(s):  
Jeffrey D. Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

AbstractFor a complex projective manifold, Walker has defined a regular homomorphism lifting Griffiths’ Abel–Jacobi map on algebraically trivial cycle classes to a complex abelian variety, which admits a finite homomorphism to the Griffiths intermediate Jacobian. Recently Suzuki gave an alternate, Hodge-theoretic, construction of this Walker Abel–Jacobi map. We provide a third construction based on a general lifting property for surjective regular homomorphisms, and prove that the Walker Abel–Jacobi map descends canonically to any field of definition of the complex projective manifold. In addition, we determine the image of the l-adic Bloch map restricted to algebraically trivial cycle classes in terms of the coniveau filtration.


1956 ◽  
Vol 78 (3) ◽  
pp. 509 ◽  
Author(s):  
Andre Weil

2019 ◽  
Vol 62 (3) ◽  
pp. 640-660
Author(s):  
FLORIAN BOUYER

AbstractIn [5], Eklund showed that a general (ℤ/2ℤ)4 -invariant quartic K3 surface contains at least 320 conics. In this paper, we analyse the field of definition of those conics as well as their Monodromy group. As a result, we prove that the moduli space of (ℤ/2ℤ)4-invariant quartic K3 surface with a certain marked conic has 10 irreducible components.


1993 ◽  
Vol 47 (3) ◽  
pp. 317-325 ◽  
Author(s):  
E. Ballico

Sign in / Sign up

Export Citation Format

Share Document