intermediate jacobian
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Jeffrey D. Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

AbstractFor a complex projective manifold, Walker has defined a regular homomorphism lifting Griffiths’ Abel–Jacobi map on algebraically trivial cycle classes to a complex abelian variety, which admits a finite homomorphism to the Griffiths intermediate Jacobian. Recently Suzuki gave an alternate, Hodge-theoretic, construction of this Walker Abel–Jacobi map. We provide a third construction based on a general lifting property for surjective regular homomorphisms, and prove that the Walker Abel–Jacobi map descends canonically to any field of definition of the complex projective manifold. In addition, we determine the image of the l-adic Bloch map restricted to algebraically trivial cycle classes in terms of the coniveau filtration.



Author(s):  
Florian Beck ◽  
Ron Donagi ◽  
Katrin Wendland

Abstract Folding of ADE-Dynkin diagrams according to graph automorphisms yields irreducible Dynkin diagrams of $\textrm{ABCDEFG}$-types. This folding procedure allows to trace back the properties of the corresponding simple Lie algebras or groups to those of $\textrm{ADE}$-type. In this article, we implement the techniques of folding by graph automorphisms for Hitchin integrable systems. We show that the fixed point loci of these automorphisms are isomorphic as algebraic integrable systems to the Hitchin systems of the folded groups away from singular fibers. The latter Hitchin systems are isomorphic to the intermediate Jacobian fibrations of Calabi–Yau orbifold stacks constructed by the 1st author. We construct simultaneous crepant resolutions of the associated singular quasi-projective Calabi–Yau three-folds and compare the resulting intermediate Jacobian fibrations to the corresponding Hitchin systems.



2020 ◽  
Vol Volume 4 ◽  
Author(s):  
Olivier Debarre ◽  
Alexander Kuznetsov

We describe intermediate Jacobians of Gushel-Mukai varieties $X$ of dimensions 3 or 5: if $A$ is the Lagrangian space associated with $X$, we prove that the intermediate Jacobian of $X$ is isomorphic to the Albanese variety of the canonical double covering of any of the two dual Eisenbud-Popescu-Walter surfaces associated with $A$. As an application, we describe the period maps for Gushel-Mukai threefolds and fivefolds. Comment: 48 pages. Latest addition to our series of articles on the geometry of Gushel-Mukai varieties; v2: minor stylistic improvements, results unchanged; v3: minor improvements; v4: final version, published in EPIGA



Author(s):  
Kieran G O’Grady

Abstract Dedicato alla piccola Mia. For $X$ a hyperkähler manifold of Kummer type, let $J^3(X)$ be the intermediate Jacobian associated to $H^3(X)$. We prove that $H^2(X)$ can be embedded into $H^2(J^3(X))$. We show that there exists a natural smooth quadric $Q(X)$ in the projectivization of $H^3(X)$, such that Gauss–Manin parallel transport identifies the set of projectivizations of $H^{2,1}(Y)$, for $Y$ a deformation of $X$, with an open subset of a linear section of $Q^{+}(X)$, one component of the variety of maximal linear subspaces of $Q(X)$. We give a new proof of a result of Mongardi restricting the action of monodromy on $H^2(X)$. Lastly, we show that if $X$ is projective, then $J^3(X)$ is an abelian fourfold of Weil type.



2018 ◽  
Vol 20 (07) ◽  
pp. 1750078
Author(s):  
Dimitri Markushevich ◽  
Xavier Roulleau

An arithmetic method of proving the irrationality of smooth projective 3-folds is described, using reduction modulo [Formula: see text]. It is illustrated by an application to a cubic threefold, for which the hypothesis that its intermediate Jacobian is isomorphic to the Jacobian of a curve is contradicted by reducing modulo 3 and counting points over appropriate extensions of [Formula: see text]. As a spin-off, it is shown that the 5-dimensional Prym varieties arising as intermediate Jacobians of certain cubic 3-folds have the maximal number of points over [Formula: see text] which attains Perret's and Weil's upper bounds.



Author(s):  
Jacob Murre

This chapter showcases five lectures on algebraic cycles and Chow groups. The first two lectures are over an arbitrary field, where they examine algebraic cycles, Chow groups, and equivalence relations. The second lecture also offers a short survey on the results for divisors. The next two lectures are over the complex numbers. The first of these features discussions on the cycle map, the intermediate Jacobian, Abel–Jacobi map, and the Deligne cohomology. The following lecture focuses on algebraic versus homological equivalence, as well as the Griffiths group. The final lecture, which returns to the arbitrary field, discusses the Albanese kernel and provides the results of Mumford, Bloch, and Bloch–Srinivas.



2017 ◽  
Vol 218 (1) ◽  
pp. 55-135 ◽  
Author(s):  
Radu Laza ◽  
Giulia Saccà ◽  
Claire Voisin


2014 ◽  
Vol 12 (3) ◽  
Author(s):  
Brendan Hassett ◽  
Yuri Tschinkel

AbstractWe classify quartic del Pezzo surface fibrations over the projective line via numerical invariants, giving explicit examples for small values of the invariants. For generic such fibrations, we describe explicitly the geometry of spaces of sections to the fibration, and mappings to the intermediate Jacobian of the total space. We exhibit examples where these are birational, which has applications to arithmetic questions, especially over finite fields.



2013 ◽  
Vol 149 (11) ◽  
pp. 1789-1817 ◽  
Author(s):  
Marcello Bernardara ◽  
Michele Bolognesi

AbstractWe show that a standard conic bundle over a minimal rational surface is rational and its Jacobian splits as the direct sum of Jacobians of curves if and only if its derived category admits a semiorthogonal decomposition by exceptional objects and the derived categories of those curves. Moreover, such a decomposition gives the splitting of the intermediate Jacobian also when the surface is not minimal.



Sign in / Sign up

Export Citation Format

Share Document