scholarly journals The Walker Abel–Jacobi map descends

Author(s):  
Jeffrey D. Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

AbstractFor a complex projective manifold, Walker has defined a regular homomorphism lifting Griffiths’ Abel–Jacobi map on algebraically trivial cycle classes to a complex abelian variety, which admits a finite homomorphism to the Griffiths intermediate Jacobian. Recently Suzuki gave an alternate, Hodge-theoretic, construction of this Walker Abel–Jacobi map. We provide a third construction based on a general lifting property for surjective regular homomorphisms, and prove that the Walker Abel–Jacobi map descends canonically to any field of definition of the complex projective manifold. In addition, we determine the image of the l-adic Bloch map restricted to algebraically trivial cycle classes in terms of the coniveau filtration.

2019 ◽  
Vol 7 ◽  
Author(s):  
JEFFREY D. ACHTER ◽  
SEBASTIAN CASALAINA-MARTIN ◽  
CHARLES VIAL

For families of smooth complex projective varieties, we show that normal functions arising from algebraically trivial cycle classes are algebraic and defined over the field of definition of the family. In particular, the zero loci of those functions are algebraic and defined over such a field of definition. This proves a conjecture of Charles.


2018 ◽  
Vol 19 (3) ◽  
pp. 891-918 ◽  
Author(s):  
Jeffrey D. Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

We show that the image of the Abel–Jacobi map admits functorially a model over the field of definition, with the property that the Abel–Jacobi map is equivariant with respect to this model. The cohomology of this abelian variety over the base field is isomorphic as a Galois representation to the deepest part of the coniveau filtration of the cohomology of the projective variety. Moreover, we show that this model over the base field is dominated by the Albanese variety of a product of components of the Hilbert scheme of the projective variety, and thus we answer a question of Mazur. We also recover a result of Deligne on complete intersections of Hodge level 1.


2013 ◽  
Vol 24 (01) ◽  
pp. 1250122 ◽  
Author(s):  
PRISKA JAHNKE ◽  
IVO RADLOFF

Let M be a complex projective manifold with the property that for any compact Riemann surface C and holomorphic map f : C → M the pullback of the tangent bundle of M is semistable. We prove that in this case M is a curve or a finite étale quotient of an abelian variety answering a conjecture of Biswas.


Author(s):  
Dinh Tuan Huynh ◽  
Duc-Viet Vu

AbstractLet {f:\mathbb{C}\to X} be a transcendental holomorphic curve into a complex projective manifold X. Let L be a very ample line bundle on {X.} Let s be a very generic holomorphic section of L and D the zero divisor given by {s.} We prove that the geometric defect of D (defect of truncation 1) with respect to f is zero. We also prove that f almost misses general enough analytic subsets on X of codimension 2.


Author(s):  
ELEONORA A. ROMANO ◽  
JAROSŁAW A. WIŚNIEWSKI

Abstract Let X be a complex projective manifold, L an ample line bundle on X, and assume that we have a ℂ* action on (X;L). We classify such triples (X; L;ℂ*) for which the closure of a general orbit of the ℂ* action is of degree ≤ 3 with respect to L and, in addition, the source and the sink of the action are isolated fixed points, and the ℂ* action on the normal bundle of every fixed point component has weights ±1. We treat this situation by relating it to the classical adjunction theory. As an application, we prove that contact Fano manifolds of dimension 11 and 13 are homogeneous if their group of automorphisms is reductive of rank ≥ 2.


1979 ◽  
Vol 75 ◽  
pp. 95-119 ◽  
Author(s):  
Hiroshi Saito

The group of cycles of codimension one algebraically equivalent to zero of a nonsingular projective variety modulo rational equivalence forms an abelian variety, i.e., the Picard variety. To the group of cycles of dimension zero and of degree zero, there corresponds an abelian variety, the Albanese variety. Similarly, Weil, Lieberman and Griffiths have attached complex tori to the cycles of intermediate dimension in the classical case. The aim of this article is to give a purely algebraic construction of such “intermediate Jacobian varieties.”


1991 ◽  
Vol 124 ◽  
pp. 13-40 ◽  
Author(s):  
Hirotaka Fujimoto

In [5], the author proved that the Gauss map of a nonflat complete minimal surface immersed in R3 can omit at most four points of the sphere, and in [7] he revealed some relations between this result and the defect relation in Nevanlinna theory on value distribution of meromorphic functions. Afterwards, Mo and Osserman obtained an improvement of these results in their paper [11], which asserts that if the Gauss map of a nonflat complete minimal surface M immersed in R3 takes on five distinct values only a finite number of times, then M has finite total curvature. The author also gave modified defect relations for holomorphic maps of a Riemann surface with a complete conformai metric into the n-dimensional complex projective space Pn(C) and, as its application, he showed that, if the (generalized) Gauss map G of a complete minimal surface M immersed in Rm is nondegenerate, namely, the image G(M) is not contained in any hyperplane in Pm − 1(C), then it can omit at most m(m + 1)/2 hyperplanes in general position ([8]). Here, the number m(m + 1)/2 is best-possible for arbitrary odd numbers and some small even numbers m (see [6]). Recently, Ru showed that the “nondegenerate” assumption of the above result can be dropped ([13]). In this paper, we shall introduce a new definition of modified defect and prove a refined Modified defect relation. As its application, we shall give some improvements of the above-mentioned results in [5], [7], [8], [11] and [13].


Sign in / Sign up

Export Citation Format

Share Document