On the field of definition of vector bundles on real varieties

1993 ◽  
Vol 47 (3) ◽  
pp. 317-325 ◽  
Author(s):  
E. Ballico
Author(s):  
Jeffrey D. Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

AbstractFor a complex projective manifold, Walker has defined a regular homomorphism lifting Griffiths’ Abel–Jacobi map on algebraically trivial cycle classes to a complex abelian variety, which admits a finite homomorphism to the Griffiths intermediate Jacobian. Recently Suzuki gave an alternate, Hodge-theoretic, construction of this Walker Abel–Jacobi map. We provide a third construction based on a general lifting property for surjective regular homomorphisms, and prove that the Walker Abel–Jacobi map descends canonically to any field of definition of the complex projective manifold. In addition, we determine the image of the l-adic Bloch map restricted to algebraically trivial cycle classes in terms of the coniveau filtration.


1967 ◽  
Vol 29 ◽  
pp. 121-126
Author(s):  
Akikuni Kato

In the present note we shall be concerned with the improvement of fundamental definitions in higher order enumerative geometry which has been recently given by W. F. Pohl. Pohl’s definition of q-th derivative of vector bundle is very complicated. We shall give a simpler and more reasonable definition of the q-th derivative of vector bundle in terms of sheaf theory and simplify the proofs in [P]. We shall also give a definition of higher order singularity of map.


Author(s):  
Eckhard Meinrenken ◽  
Jeffrey Pike

Abstract Given a double vector bundle $D\to M$, we define a bigraded bundle of algebras $W(D)\to M$ called the “Weil algebra bundle”. The space ${\mathcal{W}}(D)$ of sections of this algebra bundle ”realizes” the algebra of functions on the supermanifold $D[1,1]$. We describe in detail the relations between the Weil algebra bundles of $D$ and those of the double vector bundles $D^{\prime},\ D^{\prime\prime}$ obtained from $D$ by duality operations. We show that ${\mathcal{V}\mathcal{B}}$-algebroid structures on $D$ are equivalent to horizontal or vertical differentials on two of the Weil algebras and a Gerstenhaber bracket on the 3rd. Furthermore, Mackenzie’s definition of a double Lie algebroid is equivalent to compatibilities between two such structures on any one of the three Weil algebras. In particular, we obtain a ”classical” version of Voronov’s result characterizing double Lie algebroid structures. In the case that $D=TA$ is the tangent prolongation of a Lie algebroid, we find that ${\mathcal{W}}(D)$ is the Weil algebra of the Lie algebroid, as defined by Mehta and Abad–Crainic. We show that the deformation complex of Lie algebroids, the theory of IM forms and IM multi-vector fields, and 2-term representations up to homotopy all have natural interpretations in terms of our Weil algebras.


1956 ◽  
Vol 78 (3) ◽  
pp. 509 ◽  
Author(s):  
Andre Weil

Author(s):  
Claudio Meneses ◽  
Leon A. Takhtajan

AbstractModuli spaces of stable parabolic bundles of parabolic degree 0 over the Riemann sphere are stratified according to the Harder–Narasimhan filtration of underlying vector bundles. Over a Zariski open subset $$\mathscr {N}_{0}$$ N 0 of the open stratum depending explicitly on a choice of parabolic weights, a real-valued function $$\mathscr {S}$$ S is defined as the regularized critical value of the non-compact Wess–Zumino–Novikov–Witten action functional. The definition of $$\mathscr {S}$$ S depends on a suitable notion of parabolic bundle ‘uniformization map’ following from the Mehta–Seshadri and Birkhoff–Grothendieck theorems. It is shown that $$-\mathscr {S}$$ - S is a primitive for a (1,0)-form $$\vartheta $$ ϑ on $$\mathscr {N}_{0}$$ N 0 associated with the uniformization data of each intrinsic irreducible unitary logarithmic connection. Moreover, it is proved that $$-\mathscr {S}$$ - S is a Kähler potential for $$(\Omega -\Omega _{\mathrm {T}})|_{\mathscr {N}_{0}}$$ ( Ω - Ω T ) | N 0 , where $$\Omega $$ Ω is the Narasimhan–Atiyah–Bott Kähler form in $$\mathscr {N}$$ N and $$\Omega _{\mathrm {T}}$$ Ω T is a certain linear combination of tautological (1, 1)-forms associated with the marked points. These results provide an explicit relation between the cohomology class $$[\Omega ]$$ [ Ω ] and tautological classes, which holds globally over certain open chambers of parabolic weights where $$\mathscr {N}_{0} = \mathscr {N}$$ N 0 = N .


Sign in / Sign up

Export Citation Format

Share Document