The Bornological Tensor Product of two Riesz spaces: Proof and Background Material

Author(s):  
G. Buskes ◽  
A. van Rooij
1988 ◽  
Vol 104 (2) ◽  
pp. 331-345 ◽  
Author(s):  
J. J. Grobler ◽  
C. C. A. Labuschagne

A Riesz space tensor product of Archimedean Riesz spaces was introduced by D. H. Fremlin[2, 3]. His construction as well as a subsequent simplified version by H. H. Schaefer[10] depended on representation techniques and it is our aim to find a more direct way to prove the existence of the tensor product and to derive its properties. This tensor product proved to be extremely useful in the theory of positive operators on Banach lattices (see [3] and [10]) and should be considered as one of the basic constructions in the theory of Riesz spaces. It is therefore of interest to construct it in an intrinsic way. The problem to do this was already posed by Fremlin in [2]. In this paper we shall present two different approaches, the first of which is analogous to the formation of a free lattice generated by a given partially ordered set. (See [5], p. 41.) In the second one we first assume the Riesz spaces involved to have the principal projection property. In this case a simple method of construction by step-elements is available and the tensor product of arbitrary Archimedean Riesz spaces can then be obtained by embedding the spaces into their Dedekind completions. To complete the latter step we need results on the extension of Riesz bimorphisms which will be proved in §1. Both our approaches hinge on results about the tensor product of ordered vector spaces. It turns out that a unique tensor product for ordered vector spaces exists and is contained in the Riesz space tensor product. This is investigated in §2.


Author(s):  
Akitoshi ITAI ◽  
Arao FUNASE ◽  
Andrzej CICHOCKI ◽  
Hiroshi YASUKAWA

Author(s):  
Xinyu Zhao ◽  
Biao Wang ◽  
Shuqian Zhu ◽  
Jun-e Feng

Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter provides some background material on definable sets, definable types, orthogonality to a definable set, and stable domination, especially in the valued field context. It considers more specifically these concepts in the framework of the theory ACVF of algebraically closed valued fields and describes the definable types concentrating on a stable definable V as an ind-definable set. It also proves a key result that demonstrates definable types as integrals of stably dominated types along some definable type on the value group sort. Finally, it discusses the notion of pseudo-Galois coverings. Every nonempty definable set over an algebraically closed substructure of a model of ACVF extends to a definable type.


This volume contains lectures delivered at the Les Houches Summer School ‘Integrability: from statistical systems to gauge theory’ held in June 2016. The School was focussed on applications of integrability to supersymmetric gauge and string theory, a subject of high and increasing interest in the mathematical and theoretical physics communities over the past decade. Relevant background material was also covered, with lecture series introducing the main concepts and techniques relevant to modern approaches to integrability, conformal field theory, scattering amplitudes, and gauge/string duality. The book will be useful not only to those working directly on integrablility in string and guage theories, but also to researchers in related areas of condensed matter physics and statistical mechanics.


1998 ◽  
Vol 5 (5) ◽  
pp. 401-414
Author(s):  
M. Bakuradze

Abstract A formula is given to calculate the last n number of symplectic characteristic classes of the tensor product of the vector Spin(3)- and Sp(n)-bundles through its first 2n number of characteristic classes and through characteristic classes of Sp(n)-bundle. An application of this formula is given in symplectic cobordisms and in rings of symplectic cobordisms of generalized quaternion groups.


2021 ◽  
Vol 5 (2) ◽  
pp. 42
Author(s):  
María A. Navascués ◽  
Ram Mohapatra ◽  
Md. Nasim Akhtar

In this paper, we define fractal bases and fractal frames of L2(I×J), where I and J are real compact intervals, in order to approximate two-dimensional square-integrable maps whose domain is a rectangle, using the identification of L2(I×J) with the tensor product space L2(I)⨂L2(J). First, we recall the procedure of constructing a fractal perturbation of a continuous or integrable function. Then, we define fractal frames and bases of L2(I×J) composed of product of such fractal functions. We also obtain weaker families as Bessel, Riesz and Schauder sequences for the same space. Additionally, we study some properties of the tensor product of the fractal operators associated with the maps corresponding to each variable.


Sign in / Sign up

Export Citation Format

Share Document