Twist Maps and Invariant Curves

Author(s):  
Kenneth R. Meyer ◽  
Glen R. Hall
Keyword(s):  
1991 ◽  
Vol 65 (3-4) ◽  
pp. 617-643 ◽  
Author(s):  
Alessandra Celletti ◽  
Luigi Chierchia

2016 ◽  
Vol 32 (4) ◽  
pp. 1295-1310 ◽  
Author(s):  
Marie-Claude Arnaud ◽  
Pierre Berger
Keyword(s):  

1996 ◽  
Vol 16 (1) ◽  
pp. 51-86 ◽  
Author(s):  
Giovanni Forni

AbstractThis paper represents a contribution to the variational approach to the understanding of the dynamics of exact area-preserving monotone twist maps of the annulus, currently known as the Aubry–Mather theory. The method introduced by Mather to construct invariant measures of Denjoy type is extended to produce almost-periodic measures, having arbitrary rationally independent frequencies, and positive entropy measures, supported within the gaps of Aubry–Mather sets which do not lie on invariant curves. This extension is based on a generalized version of the Percival's Lagrangian and on a new minimization procedure, which also gives a simplified proof of the basic existence theorem for the Aubry–Mather sets.


1988 ◽  
Vol 8 (4) ◽  
pp. 555-584 ◽  
Author(s):  
Raphaël Douady

AbstractWe prove that smooth enough invariant curves of monotone twist maps of an annulus with fixed diophantine rotation number depend on the map in a differentiable way. Partial results hold for Aubry-Mather sets.Then we show that invariant curves of the same map with different rotation numbers ω and ω′ cannot approach each other at a distance less than cst. |ω−ω′|. By K.A.M. theory, this implies that, under suitable assumptions, the union of invariant curves has positive measure.Analogous results are due to Zehnder and Herman (for the first part), and to Lazutkin and Pöschel (for the second one), in the case of Hamiltonian systems and area preserving maps.


Astérisque ◽  
2020 ◽  
Vol 416 ◽  
pp. 181-191
Author(s):  
Ricardo PEREZ-MARCO
Keyword(s):  

2001 ◽  
Vol 11 (09) ◽  
pp. 2451-2461
Author(s):  
TIFEI QIAN

The variational method has shown many advantages over the geometric method in proving the existence of connecting orbits since it requires much weaker hyperbolicity and less smoothness. Many results known to be difficult to obtain by the geometric method can now be obtained by a variational principle with relative ease. In particular, a variational principle provides a constructive approach to the existence of heteroclinic orbits. In this paper a variational principle is used to construct a heteroclinic orbit between an adjacent minimal pair of fixed points for monotone twist maps on (ℝ/ℤ) × ℝ. Application of our results to a standard map is also given.


1991 ◽  
Vol 31 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Daniel Stoffer ◽  
Kaspar Nipp

1986 ◽  
Vol 17 (5) ◽  
pp. 1053-1067 ◽  
Author(s):  
Hal L. Smith
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document