variable step size
Recently Published Documents


TOTAL DOCUMENTS

1211
(FIVE YEARS 268)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Hanwen Zhang ◽  
Zhen Qin ◽  
Yichao Zhang ◽  
Dajiang Chen ◽  
Ji Gen ◽  
...  

Abstract The Gaussian noise model has been chosen for underwater information sensing tasks under substantial interference for most of the research at present. However, it often contains a strong impact and does not conform to the Gaussian distribution. In this paper, a practical underwater information sensing system is proposed based on intermittent chaos under the background of Lévy noise. In this system, a novel Lévy noise model is presented to describe the underwater natural environment interference and estimate its parameters, which can better describe the impact characteristics of the underwater environment. Then an underwater environment sensing method of dual-coupled intermittent chaotic Duffing oscillator is improved by using the variable step-size method and scale transformation. The simulation results show that the method can sense weak signals and estimate their frequencies under the background of strong Lévy noise, and the estimation error is as low as 0.03%. Compared with the intermittent chaos of the single Duffing oscillator and the intermittent chaotic Duffing of double coupling, the minimum SNR ratio threshold has been reduced by 11.5dB and 6.9dB, respectively, and the computational cost significantly reduced, and the sensing efficiency is significantly improved.


2022 ◽  
Vol 12 (2) ◽  
pp. 587
Author(s):  
Sajid Sarwar ◽  
Muhammad Yaqoob Javed ◽  
Mujtaba Hussain Jaffery ◽  
Jehangir Arshad ◽  
Ateeq Ur Rehman ◽  
...  

Photovoltaic (PV) system has been extensively used over the last few years because it is a noise-free, clean, and environmentally friendly source of energy. Maximum Power Point (MPP) from the PV energy systems is a challenging task under modules mismatching and partial shading. Up till now, various MPP tracking algorithms have been used for solar PV energy systems. Classical algorithms are simple, fast, and useful in quick tracing the MPP, but restricted to uniform weather conditions. Moreover, these algorithms do not search the Global Maxima (GM) and get stuck on Local Maxima (LM). However, bio-inspired algorithms help find the GM but their main drawback is that they take more time to track the GM. This paper addresses the issue by using the combination of conventional Incremental Conductance (InC) with variable step size and bio-inspired Dragonfly Optimization (DFO) algorithms leading to a hybrid (InC-DFO) technique under multiple weather conditions, for instance, Uniform Irradiance (UI), Partial Shading (PS), and Complex Partial Shading (CPS). To check the robustness of the proposed algorithm, a comparative analysis is done with six already implemented techniques. The results indicate that the proposed technique is simple, efficient with a quicker power tracking capability. Furthermore, it reduces undesired oscillation around the MPP especially, under PS and CPS conditions. The proposed algorithm has the highest efficiencies of 99.93%, 99.88%, 99.92%, and 99.98% for UI, PS1, PS2, and CPS accordingly among all techniques. It has also reduced the settling time of 0.75 s even in the case of the CPS condition. The performance of the suggested method is also verified using real-time data from the Beijing database.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Song-Pei Ye ◽  
Yi-Hua Liu ◽  
Chun-Yu Liu ◽  
Kun-Che Ho ◽  
Yi-Feng Luo

In conventional adaptive variable step size (VSS) maximum power point tracking (MPPT) algorithms, a scaling factor is utilized to determine the required perturbation step. However, the performance of the adaptive VSS MPPT algorithm is essentially decided by the choice of scaling factor. In this paper, a neural network assisted variable step size (VSS) incremental conductance (IncCond) MPPT method is proposed. The proposed method utilizes a neural network to obtain an optimal scaling factor that should be used in current irradiance level for the VSS IncCond MPPT method. Only two operating points on the characteristic curve are needed to acquire the optimal scaling factor. Hence, expensive irradiance and temperature sensors are not required. By adopting a proper scaling factor, the performance of the conventional VSS IncCond method can be improved, especially under rapid varying irradiance conditions. To validate the studied algorithm, a 400 W prototyping circuit is built and experiments are carried out accordingly. Comparing with perturb and observe (P&O), α-P&O, golden section and conventional VSS IncCond MPPT methods, the proposed method can improve the tracking loss by 95.58%, 42.51%, 93.66%, and 66.14% under EN50530 testing condition, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qiang Han

For backward stochastic differential equations (BSDEs), we construct variable step size Adams methods by means of Itô–Taylor expansion, and these schemes are nonlinear multistep schemes. It is deduced that the conditions of local truncation errors with respect to Y and Z reach high order. The coefficients in the numerical methods are inferred and bounded under appropriate conditions. A necessary and sufficient condition is given to judge the stability of our numerical schemes. Moreover, the high-order convergence of the schemes is rigorously proved. The numerical illustrations are provided.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3076
Author(s):  
Ikram Saady ◽  
Mohammed Karim ◽  
Badre Bossoufi ◽  
Saad Motahhir ◽  
Mohamed said Adouairi ◽  
...  

Due to the increase in electricity and diesel costs, solar photovoltaic pumping systems have become a good solution, especially in rural areas. This work presents a standalone photovoltaic (PV) water pumping system (PVWPS) driven by an induction motor without energy storage to improve the pumping system’s performance. First, a comparison is made between two types: perturb and observe (P&O) method and incremental conductance (INC) MPPT method with a variable step size that is automatically adjusted. Studying these two techniques helps to understand which one can result in a system with less oscillation and greater efficiency when tracking the maximum power point from the PV panel under sudden irradiation conditions. This MPPT works on the operating duty cycle of the boost converter. Then, that converter combines with a voltage source inverter (VSI) to convert DC power to AC power. Second, we use indirect field-oriented control (IRFOC), which drives the three-phase of an induction motor in turn to run the centrifugal pump. The simulation results of this work were obtained using the MATLAB Simulink platform.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8245
Author(s):  
Abderrazek Saoudi ◽  
Saber Krim ◽  
Mohamed Faouzi Mimouni

This paper aims to search for a high-performance low-cost standalone photovoltaic water pumping system (PVWPS) based on a three-phase induction motor (IM). In order to control the IM, a fuzzy direct torque control (FDTC) is proposed in this paper for overcoming the limitations of the conventional direct torque control (CDTC). In fact, the CDTC suffers from several problems such as torque ripples, current distortion, and switching frequency variations. These problems can be solved with the proposed FDTC. To ensure high performance of the PVWPS, the reference torque is generated using a fuzzy speed controller (FSC) instead of a conventional proportional integral speed controller. In order to extract the maximum amount of power, the proposed maximum power point tracking controller is based on variable step size perturb and observe to surmount the weakness of the conventional perturb and observe technique. The performance of the proposed FDTC based on the FSC under variable climatic conditions is demonstrated by digital simulation using Matlab/Simulink. The obtained results show the effectiveness of the suggested FDTC based on the FSC compared with the CDTC in terms of pumped water, reduction in flux and torque ripple, diminution of losses, and decrease in the stator current harmonic.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sean P. Carney ◽  
Wen Ma ◽  
Kevin D. Whitley ◽  
Haifeng Jia ◽  
Timothy M. Lohman ◽  
...  

AbstractUvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases.


Sign in / Sign up

Export Citation Format

Share Document