Invariant curves for area-preserving twist maps far from integrable

1991 ◽  
Vol 65 (3-4) ◽  
pp. 617-643 ◽  
Author(s):  
Alessandra Celletti ◽  
Luigi Chierchia
1996 ◽  
Vol 16 (1) ◽  
pp. 51-86 ◽  
Author(s):  
Giovanni Forni

AbstractThis paper represents a contribution to the variational approach to the understanding of the dynamics of exact area-preserving monotone twist maps of the annulus, currently known as the Aubry–Mather theory. The method introduced by Mather to construct invariant measures of Denjoy type is extended to produce almost-periodic measures, having arbitrary rationally independent frequencies, and positive entropy measures, supported within the gaps of Aubry–Mather sets which do not lie on invariant curves. This extension is based on a generalized version of the Percival's Lagrangian and on a new minimization procedure, which also gives a simplified proof of the basic existence theorem for the Aubry–Mather sets.


1988 ◽  
Vol 8 (4) ◽  
pp. 555-584 ◽  
Author(s):  
Raphaël Douady

AbstractWe prove that smooth enough invariant curves of monotone twist maps of an annulus with fixed diophantine rotation number depend on the map in a differentiable way. Partial results hold for Aubry-Mather sets.Then we show that invariant curves of the same map with different rotation numbers ω and ω′ cannot approach each other at a distance less than cst. |ω−ω′|. By K.A.M. theory, this implies that, under suitable assumptions, the union of invariant curves has positive measure.Analogous results are due to Zehnder and Herman (for the first part), and to Lazutkin and Pöschel (for the second one), in the case of Hamiltonian systems and area preserving maps.


2016 ◽  
Vol 32 (4) ◽  
pp. 1295-1310 ◽  
Author(s):  
Marie-Claude Arnaud ◽  
Pierre Berger
Keyword(s):  

1994 ◽  
Vol 73 (4) ◽  
pp. 388-398 ◽  
Author(s):  
J.A. Ketoja ◽  
R.S. MacKay

1990 ◽  
Vol 10 (2) ◽  
pp. 209-229 ◽  
Author(s):  
Dov Aharonov ◽  
Uri Elias

AbstractThe stability of a fixed point of an area-preserving transformation in the plane is characterized by the invariant curves which surround it. The existence of invariant curves had been extensively studied for elliptic fixed points. Here we study the similar problem for parabolic fixed points. In particular we are interested in the case where the fixed point is at infinity.


1997 ◽  
Vol 07 (02) ◽  
pp. 351-372 ◽  
Author(s):  
D. Aharonov ◽  
R. L. Devaney ◽  
U. Elias

The paper describes the dynamics of a piecewise linear area preserving map of the plane, F: (x, y) → (1 - y - |x|, x), as well as that portion of the dynamics that persists when the map is approximated by the real analytic map Fε: (x, y) → (1 - y - fε(x), x), where fε(x) is real analytic and close to |x| for small values of ε. Our goal in this paper is to describe in detail the island structure and the chaotic behavior of the piecewise linear map F. Then we will show that these islands do indeed persist and contain infinitely many invariant curves for Fε, provided that ε is small.


1990 ◽  
Vol 10 (2) ◽  
pp. 231-245 ◽  
Author(s):  
Dov Aharonov ◽  
Uri Elias

AbstractA fixed point of an area-preserving mapping of the plane is called elliptic if the eigenvalues of its linearization are of unit modulus but not ±1; it is parabolic if both eigenvalues are 1 or −1. The elliptic case is well understood by Moser's theory. Here we study when is a parabolic fixed point surrounded by closed invariant curves. We approximate our mapping T by the phase flow of an Hamiltonian system. A pair of variables, closely related to the action-angle variables, is used to reduce T into a twist mapping. The conditions for T to have closed invariant curves are stated in terms of the Hamiltonian.


1986 ◽  
Vol 6 (2) ◽  
pp. 205-239 ◽  
Author(s):  
Kevin Hockett ◽  
Philip Holmes

AbstractWe investigate the implications of transverse homoclinic orbits to fixed points in dissipative diffeomorphisms of the annulus. We first recover a result due to Aronsonet al.[3]: that certain such ‘rotary’ orbits imply the existence of an interval of rotation numbers in the rotation set of the diffeomorphism. Our proof differs from theirs in that we use embeddings of the Smale [61] horseshoe construction, rather than shadowing and pseudo orbits. The symbolic dynamics associated with the non-wandering Cantor set of the horseshoe is then used to prove the existence of uncountably many invariant Cantor sets (Cantori) of each irrational rotation number in the interval, some of which are shown to be ‘dissipative’ analogues of the order preserving Aubry-Mather Cantor sets found by variational methods in area preserving twist maps. We then apply our results to the Josephson junction equation, checking the necessary hypotheses via Melnikov's method, and give a partial characterization of the attracting set of the Poincaré map for this equation. This provides a concrete example of a ‘Birkhoff attractor’ [10].


Sign in / Sign up

Export Citation Format

Share Document