Human Isolates of Large Colony-Forming β Hemolytic Group G Streptococci form a Distinct Clade upon 16S rRNA Gene Analysis

Author(s):  
Norbert Schnitzler ◽  
Gerhard Haase ◽  
Andreas Podbielski ◽  
Achim Kaufhold ◽  
Christoph Lämmler ◽  
...  
Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 916
Author(s):  
Sebastian Böttger ◽  
Silke Zechel-Gran ◽  
Daniel Schmermund ◽  
Philipp Streckbein ◽  
Jan-Falco Wilbrand ◽  
...  

Odontogenic abscesses are usually caused by bacteria of the oral microbiome. However, the diagnostic culture of these bacteria is often prone to errors and sometimes fails completely due to the fastidiousness of the relevant bacterial species. The question arises whether additional pathogen diagnostics using molecular methods provide additional benefits for diagnostics and therapy. Experimental 16S rRNA gene analysis with next-generation sequencing (NGS) and bioinformatics was used to identify the microbiome of the pus in patients with severe odontogenic infections and was compared to the result of standard diagnostic culture. The pus microbiome was determined in 48 hospitalized patients with a severe odontogenic abscess in addition to standard cultural pathogen detection. Cultural detection was possible in 41 (85.42%) of 48 patients, while a pus-microbiome could be determined in all cases. The microbiomes showed polymicrobial infections in 46 (95.83%) cases, while the picture of a mono-infection occurred only twice (4.17%). In most cases, a predominantly anaerobic spectrum with an abundance of bacteria was found in the pus-microbiome, while culture detected mainly Streptococcus, Staphylococcus, and Prevotella spp. The determination of the microbiome of odontogenic abscesses clearly shows a higher number of bacteria and a significantly higher proportion of anaerobes than classical cultural methods. The 16S rRNA gene analysis detects considerably more bacteria than conventional cultural methods, even in culture-negative samples. Molecular methods should be implemented as standards in medical microbiology diagnostics, particularly for the detection of polymicrobial infections with a predominance of anaerobic bacteria.


2008 ◽  
Vol 97 (3) ◽  
pp. 265-272 ◽  
Author(s):  
R.J. Dillon ◽  
G. Webster ◽  
A.J. Weightman ◽  
V.M. Dillon ◽  
S. Blanford ◽  
...  

2011 ◽  
Vol 49 (12) ◽  
pp. 4352-4355 ◽  
Author(s):  
V. B. Rudkjobing ◽  
T. R. Thomsen ◽  
M. Alhede ◽  
K. N. Kragh ◽  
P. H. Nielsen ◽  
...  

1992 ◽  
Vol 100 (1-3) ◽  
pp. 59-65 ◽  
Author(s):  
Paul A. Rochelle ◽  
John C. Fry ◽  
R. John Parkes ◽  
Andrew J. Weightman

2006 ◽  
Vol 52 (11) ◽  
pp. 1036-1045 ◽  
Author(s):  
Frank Rasche ◽  
Robert Trondl ◽  
Christina Naglreiter ◽  
Thomas G Reichenauer ◽  
Angela Sessitsch

A climate chamber experiment was conducted to assay the effect of low temperatures (chilling) on the diversity of bacteria colonizing the endospheres of two thermophilic sweet pepper (Capsicum anuum L.) cultivars, Milder Spiral and Ziegenhorn Bello. Structural diversity was analyzed by 16S rRNA-based terminal restriction fragment length polymorphism (T-RFLP) analysis and by the generation of 16S rRNA gene libraries to determine dominant community members in T-RFLP profiles. Cultivable community members colonizing lines Milder Spiral and Ziegenhorn Bello were identified by 16S rRNA gene analysis. T-RFLP profiles and 16S rRNA gene libraries revealed a high heterogeneity of community composition due to chilling and suggested further the existence of cultivar-specific communities. The majority of isolates obtained from the cultivar Milder Spiral were assigned as high-G+C Gram-positive bacteria (Microbacterium sp., Micrococcus sp., Rhodococcus sp.) and Firmicutes (Staphylococcus sp.). Of the isolated endophytes obtained from cultivar Zeigenhorn Bello, 93% were affiliated with Staphylococcus aureus and Bacillus sp. (Firmicutes). The experimental set-up was suited to demonstrate that chilling and cultivar type can influence the diversity of bacterial endophytes colonizing sweet pepper. We propose additional chilling experiments to investigate the effect of chilling on functional, plant-beneficial abilities of bacterial endophytes associated with low-temperature-sensitive crops, such as sweet pepper.Key words: chilling, thermophilic sweet pepper, bacterial endophyte diversity, 16S rRNA gene analysis.


Sign in / Sign up

Export Citation Format

Share Document