groundwater exchange
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 23)

H-INDEX

22
(FIVE YEARS 2)

Geologija ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 205-220
Author(s):  
Luka SERIANZ ◽  
Sonja CERAR ◽  
Polona VREČA

Triglavska Bistrica is a typical Alpine river in the north-western part of Slovenia. Its recharge area includes some of the highest peaks in the Julian Alps. The hydrogeological conditions and flow of the river depend largely on groundwater exchange between the karstified aquifer in the carbonate rocks and the intergranular aquifer in the glaciofluvial deposits. The average volume of the river flow is up to several m3/s. In this study, water samples from different locations along the river were analysed for stable isotope ratios of oxygen and hydrogen, major ions, and concentration of tritium activity. The correlation of major ions suggests that the recharge area consists of both limestone and dolomite rocks. The δ18O and δ2H values decrease downstream, implying that the average recharge elevation increases. At the downstream sampling site V-5, located approx. 300 m upstream from the confluence of the Sava Dolinka River, the calculated mean recharge altitude is estimated to be 1,996 m.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2787
Author(s):  
Xin Jin ◽  
Yanxiang Jin ◽  
Xufeng Mao ◽  
Jingya Zhai ◽  
Di Fu

Vegetation change in arid areas may lead to the redistribution of regional water resources, which can intensify the competition between ecosystems and humans for water resources. This study aimed to accurately model the impact of vegetation change on hydrological processes in an arid endorheic river watershed undergoing revegetation, namely, the middle and lower reaches of the Bayin River basin, China. A LU-SWAT-MODFLOW model was developed by integrating dynamic hydrological response units with a coupled SWAT-MODFLOW model, which can reflect actual land cover changes in the basin. The LU-SWAT-MODFLOW model outperformed the original SWAT-MODFLOW model in simulating the impact of human activity as well as the leaf area index, evapotranspiration, and groundwater table depth. After regional revegetation, evapotranspiration and groundwater recharge in different sub-basins increased significantly. In addition, the direction and amount of surface-water–groundwater exchange changed considerably in areas where revegetation involved converting low-coverage grassland and bare land to forestland.


2021 ◽  
Author(s):  
ReNae S Nowicki ◽  
Mark C Rains ◽  
Jason J LaRoche ◽  
Christine M Downs ◽  
Sarah E Kruse

Abstract This study investigates hydrogeologic controls on a peculiar, poorly studied type of geographically isolated wetland in west-central Florida, USA, locally referred to as “sandhill wetlands.” Their peculiarity lies in their connectivity to a large, regional aquifer, which controls their hydrology and influences their ecological expression. Six wetlands and one wetland-pond complex were examined using geophysical, lithologic, hydrologic, and ecological data. These data were used to configure site-specific hydrogeology, from which two conceptual models were developed. The first model depicts mechanisms of sandhill wetland connectivity to the regional aquifer. Three mechanisms of connectivity are proposed based on the degree and depth of aquifer confinement: 1) direct - due to wetland embedment directly in the unconfined regional aquifer; 2) indirect - due to embedment in a surficial aquifer, where groundwater exchange with the regional aquifer occurs through breaches in the semi-confining unit; and 3) none - due to embedment in a surficial aquifer where groundwater exchange with the regional aquifer does not occur because the semi-confining unit is too deep. The second model conceptualizes fundamental sandhill wetland ecohydrology. It depicts how the geomorphology of a sandhill depression relative to the range of the regional water table determine whether that feature will manifest as a wetland or as a pond, lake, sink, or upland. Findings from both models contribute to the limited understanding of sandhill wetland, pond, and lake ecohydrology and may be used to improve how they are classified, assessed, managed, and preserved as valuable natural resources.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1226
Author(s):  
Pakorn Ditthakit ◽  
Sirimon Pinthong ◽  
Nureehan Salaeh ◽  
Fadilah Binnui ◽  
Laksanara Khwanchum ◽  
...  

Accurate monthly runoff estimation is crucial in water resources management, planning, and development, preventing and reducing water-related problems, such as flooding and droughts. This article evaluates the monthly hydrological rainfall-runoff model’s performance, the GR2M model, in Thailand’s southern basins. The GR2M model requires only two parameters: production store (X1) and groundwater exchange rate (X2). Moreover, no prior research has been reported on its application in this region. The 37 runoff stations, which are located in three sub-watersheds of Thailand’s southern region, namely; Thale Sap Songkhla, Peninsular-East Coast, and Peninsular-West Coast, were selected as study cases. The available monthly hydrological data of runoff, rainfall, air temperature from the Royal Irrigation Department (RID) and the Thai Meteorological Department (TMD) were collected and analyzed. The Thornthwaite method was utilized for the determination of evapotranspiration. The model’s performance was conducted using three statistical indices: Nash–Sutcliffe Efficiency (NSE), Correlation Coefficient (r), and Overall Index (OI). The model’s calibration results for 37 runoff stations gave the average NSE, r, and OI of 0.657, 0.825, and 0.757, respectively. Moreover, the NSE, r, and OI values for the model’s verification were 0.472, 0.750, and 0.639, respectively. Hence, the GR2M model was qualified and reliable to apply for determining monthly runoff variation in this region. The spatial distribution of production store (X1) and groundwater exchange rate (X2) values was conducted using the IDW method. It was susceptible to the X1, and X2 values of approximately more than 0.90, gave the higher model’s performance.


2021 ◽  
Author(s):  
Xin Jin ◽  
Yanxiang Jin

Abstract Vegetation change in arid areas may lead to the redistribution of regional water resources, which can intensify the competition between ecosystems and humans for water resources. Thus, it is necessary to understand the impact of vegetation change on hydrological processes in arid areas. We aimed to accurately model the impact of vegetation change on hydrological processes in an arid endorheic river watershed undergoing revegetation. The middle and lower reaches of the Bayin River basin, China were investigated because this is an area of frequent surface water–groundwater interactions and evident revegetation. A LU-SWAT-MODFLOW model was developed by integrating dynamic hydrological response units with a coupled SWAT-MODFLOW model, which can reflect actual land cover changes in the basin. The results showed that the LU-SWAT-MODFLOW model outperformed the original SWAT-MODFLOW model in simulating human activity impact as well as the leaf area index, evapotranspiration, and groundwater table depth. After regional revegetation, evapotranspiration in different sub-basins increased by 1.5 mm per month and by 6 mm per year. The groundwater recharge increased by 1.27 mm on average per month and 14.02 mm on average per year. Irrigation for the recovered vegetation strongly affected the groundwater recharge. In addition, the direction and amount of surface water–groundwater exchange considerably changed in areas where revegetation involved converting low-coverage grassland and bare land to forestland. In areas where revegetation involved converting farmland to forestland, the transition had a weak effect on the direction and amount of surface water–groundwater exchange.


Sign in / Sign up

Export Citation Format

Share Document