dna extraction
Recently Published Documents


TOTAL DOCUMENTS

3196
(FIVE YEARS 906)

H-INDEX

86
(FIVE YEARS 10)

Epigenomics ◽  
2022 ◽  
Author(s):  
Ze Zhang ◽  
Min Kyung Lee ◽  
Laurent Perreard ◽  
Karl T Kelsey ◽  
Brock C Christensen ◽  
...  

Aim: Tandem bisulfite (BS) and oxidative bisulfite (oxBS) conversion on DNA followed by hybridization to Infinium HumanMethylation BeadChips allows nucleotide resolution of 5-hydroxymethylcytosine genome-wide. Here, the authors compared data quality acquired from BS-treated and oxBS-treated samples. Materials & methods: Raw BeadArray data from 417 pairs of samples across 12 independent datasets were included in the study. Probe call rates were compared between paired BS and oxBS treatments controlling for technical variables. Results: oxBS-treated samples had a significantly lower call-rate. Among technical variables, DNA-specific extraction kits performed better with higher call rates after oxBS conversion. Conclusion: The authors emphasize the importance of quality control during oxBS conversion to minimize information loss and recommend using a DNA-specific extraction kit for DNA extraction and an oxBSQC package for data preprocessing.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262355
Author(s):  
Elinor Shvartsman ◽  
Meika E. I. Richmond ◽  
John J. Schellenberg ◽  
Alana Lamont ◽  
Catia Perciani ◽  
...  

Background The microbiota of the lower female genital tract plays an important role in women’s health. Microbial profiling using the chaperonin60 (cpn60) universal target (UT) improves resolution of vaginal species associated with negative health outcomes compared to the more commonly used 16S ribosomal DNA target. However, the choice of DNA extraction and PCR product purification methods may bias sequencing-based microbial studies and should be optimized for the sample type and molecular target used. In this study, we compared two commercial DNA extraction kits and two commercial PCR product purification kits for the microbial profiling of cervicovaginal samples using the cpn60 UT. Methods DNA from cervicovaginal secretions and vaginal lavage samples as well as mock community standards were extracted using either the specialized QIAamp DNA Microbiome Kit, or the standard DNeasy Blood & Tissue kit with enzymatic pre-treatment for enhanced lysis of gram-positive bacteria. Extracts were PCR amplified using well-established cpn60 primer sets and conditions. Products were then purified using a column-based method (QIAquick PCR Purification Kit) or a gel-based PCR clean-up method using the QIAEX II Gel Extraction Kit. Purified amplicons were sequenced with the MiSeq platform using standard procedures. The overall quality of each method was evaluated by measuring DNA yield, alpha diversity, and microbial composition. Results DNA extracted from cervicovaginal samples using the DNeasy Blood and Tissue kit, pre-treated with lysozyme and mutanolysin, resulted in increased DNA yield, bacterial diversity, and species representation compared to the QIAamp DNA Microbiome kit. The column-based PCR product purification approach also resulted in greater average DNA yield and wider species representation compared to a gel-based clean-up method. In conclusion, this study presents a fast, effective sample preparation method for high resolution cpn60 based microbial profiling of cervicovaginal samples.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 129
Author(s):  
Elena I. Zavala ◽  
Jacqueline Tyler Thomas ◽  
Kimberly Sturk-Andreaggi ◽  
Jennifer Daniels-Higginbotham ◽  
Kerriann K. Meyers ◽  
...  

The integration of massively parallel sequencing (MPS) technology into forensic casework has been of particular benefit to the identification of unknown military service members. However, highly degraded or chemically treated skeletal remains often fail to provide usable DNA profiles, even with sensitive mitochondrial (mt) DNA capture and MPS methods. In parallel, the ancient DNA field has developed workflows specifically for degraded DNA, resulting in the successful recovery of nuclear DNA and mtDNA from skeletal remains as well as sediment over 100,000 years old. In this study we use a set of disinterred skeletal remains from the Korean War and World War II to test if ancient DNA extraction and library preparation methods improve forensic DNA profiling. We identified an ancient DNA extraction protocol that resulted in the recovery of significantly more human mtDNA fragments than protocols previously used in casework. In addition, utilizing single-stranded rather than double-stranded library preparation resulted in increased attainment of reportable mtDNA profiles. This study emphasizes that the combination of ancient DNA extraction and library preparation methods evaluated here increases the success rate of DNA profiling, and likelihood of identifying historical remains.


2022 ◽  
Vol 8 ◽  
Author(s):  
Raul Leal Faria Luiz ◽  
Rodrigo Caldas Menezes ◽  
Sandro Antonio Pereira ◽  
Raquel de Vasconcellos Carvalhaes de Oliveira ◽  
Manoel Marques Evangelista Oliveira

Sporotrichosis is a chronic, cosmopolitan granulomatous mycosis that affects humans and animals. The infection is caused by the dimorphic fungi Sporothrix sp. The aims of the present study were to evaluate, standardize and validate a nested PCR technique using two DNA purification kits for the extraction of DNA from formalin fixed and paraffin-embedded tissues (FFPE) for Sporothrix sp. detection. FFPE mycological culture pellet samples of different Sporothrix species (S. chilensis, S. mexicana, S. pallida, S. globosa, S. brasiliensis and S. schenckii) were used as positive controls and clinical FFPE tissue samples of animals positive for Cryptococcus sp., Leishmania infantum and Histoplasma sp. were used as negative controls. Ten clinical FFPE skin samples from cats with sporotrichosis were used to validate the nested PCR. These samples were cut into two distinct paraffin sectioning protocols (5 and 16 μm thick). The paraffin sections were subjected to two different DNA extraction kits (chemical and thermal extractions). A nested PCR was performed on the extracted DNA to identify the genus Sporothrix. The chemical extraction protocol with the 5 μm thick paraffin section was more effective in extracting DNA from Sporothrix sp. from FFPE samples and the nested PCR technique showed the highest sensitivities (100% in the positive controls and of 50% in the skin samples of cats) and specificity (100%). Therefore, the nested PCR using this protocol has great potential to be applied in Sporothrix sp. diagnosis in FFPE samples of cats.


2022 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Théophile Uwiringiyeyezu ◽  
Bouchra El Khalfi ◽  
Rachid Saile ◽  
Jamal Belhachmi ◽  
Abdelaziz Soukri

Human cytomegalovirus is a herpesvirus that has a worldwide seroprevalence of more than 60% of adults in developed countries and 90% in developing countries. Severe disabilities in newborns are characteristic of the human cytomegalovirus congenital infection, and this virus is implicated in graft rejection in transplant patients. To treat and follow-up the infection, the CMVPCR viral loads are required, and the DNA extraction step remains very important; however, the quantity, quality, and purity of extracted DNA from different biological fluids influence the results of PCR amplification, that is why for reliable results, the choice of nucleic acid extraction methods requires careful attention. Materials and methods: In this study, we compare 4 protocols, I (EZ1 DSP Virus kit), II (EZ1 Virus mini kit), III (QIAamp DSP virus kit), and IV (heating); the extractions are made from plasma collected on EDTA tubes, and the concentration of extracted DNA was measured on NanoDrop Lite followed by real-time CMVPCR using an Artus CMV QS-RGQ kit. All protocols are performed following the manufacturer’s instructions. Results: This study is conducted on the samples of 135 transplant patients whose follow-up medical tests related to human cytomegalovirus infection; since most of the CMVPCR results are negative, we have chosen the 10 CMVPCR positive samples and 2 negative samples as controls to conduct this comparison study. By using NanoDrop Lite to evaluate the DNA concentration, the yield of extracted DNA is higher in our heating protocol than other protocols, the EZ1 DSP virus kit and EZ1 Virus mini kit show homogeneous quantities, and the QIAamp DSP virus kit shows very low DNA yields. Comparing cycle threshold and viral loads by real-time PCR, all these protocols identified negative samples (100%), and the previously positive samples used were as follows: protocol IV (90%), protocol II (60%), and protocol I (40%). QIAamp DSP virus kit results were not real-time PCR applicable and were non-conclusive because of the low DNA yields. Conclusion: Our developed heating method (protocol IV) is very effective, reliable, simple, fast, and cheap compared to the other protocols in our study.


2022 ◽  
Author(s):  
Kyungsup Han ◽  
Insup Kim ◽  
Wei Xuan Chan ◽  
Sanglae Kim ◽  
Jeong-Hwan Kim ◽  
...  

Abstract A non-instrumented, single-use, affordable, and fully- yet safely-disposable DNA analysis system for Point Of Care (POC) diagnostic process has been proposed by integrating (1) a hydration-reactive mixture for a portable heating element as a powerless actuator, (2) commercially available optical adhesive films as valves, and (3) an exothermic reaction-based recombinant polymerase amplification (RPA) process for non-instrumented DNA amplification. The operational error tolerance of the adhesive valves was evaluated by gas production and long-lasting ability, and the amplification performance of the RPA device was validated by gel electrophoresis. Finally, a DNA analysis device was fabricated and tested based on a hydration reaction with a DNA extraction microfluidic channel and an exothermic reaction-based RPA device. In the DNA extraction process, dimethyl adipimidate (DMA) solution was used to eliminate some required injection steps from the extraction process. The integrated system's functionality was successfully demonstrated, and the suggested system could become a foundation for the ultimate total solution for POC DNA analysis.


Author(s):  
Kochi Toyomane ◽  
Ryo Yokota ◽  
Ken Watanabe ◽  
Tomoko Akutsu ◽  
Ai Asahi ◽  
...  

2021 ◽  
Vol 26 (6) ◽  
pp. 3095-3101
Author(s):  
PIYALI MONDAL ◽  
C L PATEL ◽  
RACHNA SAGAR ◽  
INSHA ZAFIR ◽  
JOYSHIKH SONOWAL ◽  
...  

A suitable method for the extraction of nucleic acids should be efficient, sensitive, rapid and simple. Moreover, ideally, good method should yield pure nucleic acid-free from any contaminant inhibitors. Several methods have been reported for viral deoxyribonucleic acid (DNA) isolation but limited information is available on quick and simple isolation of Sheeppox virus (SPPV) genomic DNA in cell culture. In this study, the healthy Vero cells and primary lamb testis cells were infected with SPPV strains such as SPPV-Jaipur, SPPV-Ranipet and SPPV-Roumanian Fanar (RF) and harvested when it exhibited clear cytopathic effect (CPE) in culture. Four different DNA extraction methods i.e., (i) Phenol/chloroform/Isoamyl alcohol method, (ii) Cell lysis buffer method, (iii) Proteinase-k method, and (iv) commercial nucleic acid extraction kit was used to extract optimum yield of viral genomic DNA from clarified culture supernatant of harvested SPPV virus. The DNA sample was characterized using the Nanodrop spectrophotometer and agarose gel electrophoresis. Significantly (p<0.05) higher yield of SPPV genomic DNA was obtained in proteinase-k method which was about 3-5 times more than other methods. Among these methods, proteinase-k protocol was found to be comparatively very effective method in terms of yield of viral genomic DNA, and was free from PCR inhibitors.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arita Sabriu-Haxhijaha ◽  
Velimir Stojkovski ◽  
Gordana Ilievska ◽  
Dean Jankuloski ◽  
Katerina Blagoevska

Abstract As the number of genetically modified crops increases rapidly, their accurate detection is significant for labelling and safety assessment. Currently, real-time PCR is the “golden standard” method for GMO detection. Hence, extraction of high quality DNA represents a crucial step for accurate and efficient DNA amplification. For GMO presence evaluation in the extracted DNA from raw corn kernels and roasted soybean, we used real-time PCR method, in consistent with the ISO17025 accreditation standards. As for DNA extraction, modified basic SDS protocol by adding RNase A enzyme in different steps of the protocol, with different time and temperature of incubation was used. The results showed as most suitable, the protocol where 10 µl of RNase A enzyme was added together with the lysis buffer at 65 °C for 30 minutes. Data for DNA yield and purity for roasted soybean was 469.6±3.3 µg/ml with A260/280 absorbance ratio 1.78±0.01. Suitability of DNA extracts for GMO analysis was assessed by screening for the presence of 35S promotor and Tnos terminator. Diluted extracts in concentrations 10, 1, 0.1, 0.01 and 0.0027 ng/µl, were tested in six replicates. Positive signal of amplification (LOD) was detected in all concentrations for both genetic elements in both matrices. The LOQ for 35S and Tnos for both matrices was 0.1 ng, while for Tnos in raw corn kernels was 0.01 ng. This in-house developed DNA extraction method is simple and obtains high-quality DNA suitable for GMO screening of 35S promotor and Tnos terminator in both raw and processed matrices.


Sign in / Sign up

Export Citation Format

Share Document