The Single-Molecule Approach to Membrane Protein Stoichiometry

Author(s):  
Michael G. Nichols ◽  
Richard Hallworth
Langmuir ◽  
2000 ◽  
Vol 16 (14) ◽  
pp. 5993-5997 ◽  
Author(s):  
Timothy H. Bayburt ◽  
Joseph W. Carlson ◽  
Stephen G. Sligar

2018 ◽  
Vol 430 (4) ◽  
pp. 424-437 ◽  
Author(s):  
Robert E. Jefferson ◽  
Duyoung Min ◽  
Karolina Corin ◽  
Jing Yang Wang ◽  
James U. Bowie

2021 ◽  
pp. 000370282110099
Author(s):  
Ziyu Yang ◽  
Haiqi Xu ◽  
Jiayu Wang ◽  
Wei Chen ◽  
Meiping Zhao

Fluorescence-based single molecule techniques, mainly including fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence resonance energy transfer (smFRET), are able to analyze the conformational dynamics and diversity of biological macromolecules. They have been applied to analysis of the dynamics of membrane proteins, such as membrane receptors and membrane transport proteins, due to their superior ability in resolving spatio-temporal heterogeneity and the demand of trace amounts of analytes. In this review, we first introduced the basic principle involved in FCS and smFRET. Then we summarized the labelling and immobilization strategies of membrane protein molecules, the confocal-based and TIRF-based instrumental configuration, and the data processing methods. The applications to membrane protein dynamics analysis are described in detail with the focus on how to select suitable fluorophores, labelling sites, experimental setup and analysis methods. In the last part, the remaining challenges to be addressed and further development in this field are also briefly discussed.


2018 ◽  
Author(s):  
Meng-Yin Li ◽  
Yi-Lun Ying ◽  
Xi-Xin Fu ◽  
Jie Yu ◽  
Shao-Chuang Liu ◽  
...  

Millions of years of evolution have produced membrane protein channels capable of efficiently moving ions across the cell membrane. The underlying fundamental mechanisms that facilitate these actions greatly contribute to the weak non-covalent interactions. However, uncovering these dynamic interactions and its synergic network effects still remains challenging in both experimental techniques and molecule dynamics (MD) simulations. Here, we present a rational strategy that combines MD simulations and frequency-energy spectroscopy to identify and quantify the role of non-covalent interactions in carrier transport through membrane protein channels, as encoded in traditional single channel recording or ionic current. We employed wild-type aerolysin transporting of methylcytosine and cytosine as a model to explore the dynamic ionic signatures with non-stationary and non-linear frequency analysis. Our data illuminate that methylcytosine experiences strong non-covalent interactions with the aerolysin nanopore at Region 1 around R220 than cytosine, which produces characteristic frequency-energy spectra. Furthermore, we experimentally validate the obtained hypothesis from frequency-energy spectra by designing single-site mutation of K238G which creates significantly enhanced non-covalent interactions for the recognition of methylcytosine. The frequency-energy spectrum of ions flowing inside membrane channels constitutes a single-molecule interaction spectrum, which bridges the gap between traditional ionic current recording and the MD simulations, facilitating the qualitative and quantitive description of the non-covalent interactions inside membrane channels.


2009 ◽  
Vol 96 (3) ◽  
pp. 25a
Author(s):  
James T. McColl ◽  
Ricardo Alexandre ◽  
John R. James ◽  
Paul D. Dunne ◽  
Ji Won Yoon ◽  
...  

2007 ◽  
Vol 93 (3) ◽  
pp. 930-937 ◽  
Author(s):  
Johannes Preiner ◽  
Harald Janovjak ◽  
Christian Rankl ◽  
Helene Knaus ◽  
David A. Cisneros ◽  
...  

2016 ◽  
Vol 44 (3) ◽  
pp. 802-809 ◽  
Author(s):  
Jim E. Horne ◽  
Sheena E. Radford

Great strides into understanding protein folding have been made since the seminal work of Anfinsen over 40 years ago, but progress in the study of membrane protein folding has lagged behind that of their water soluble counterparts. Researchers in these fields continue to turn to more advanced techniques such as NMR, mass spectrometry, molecular dynamics (MD) and single molecule methods to interrogate how proteins fold. Our understanding of β-barrel outer membrane protein (OMP) folding has benefited from these advances in the last decade. This class of proteins must traverse the periplasm and then insert into an asymmetric lipid membrane in the absence of a chemical energy source. In this review we discuss old, new and emerging techniques used to examine the process of OMP folding and biogenesis in vitro and describe some of the insights and new questions these techniques have revealed.


2016 ◽  
Vol 110 (3) ◽  
pp. 396a
Author(s):  
Robert Jefferson ◽  
Yu-Chu Chang ◽  
Eitan Lerner ◽  
Shimon Weiss ◽  
James Bowie

Sign in / Sign up

Export Citation Format

Share Document