membrane receptors
Recently Published Documents


TOTAL DOCUMENTS

1691
(FIVE YEARS 344)

H-INDEX

95
(FIVE YEARS 11)

2022 ◽  
Vol 12 ◽  
Author(s):  
Bethany H. James ◽  
Pantelitsa Papakyriacou ◽  
Matthew J. Gardener ◽  
Louise Gliddon ◽  
Christopher J. Weston ◽  
...  

Many chronic inflammatory diseases are treated by administration of “biological” therapies in terms of fully human and humanized monoclonal antibodies or Fc fusion proteins. These tools have widespread efficacy and are favored because they generally exhibit high specificity for target with a low toxicity. However, the design of clinically applicable humanized antibodies is complicated by the need to circumvent normal antibody clearance mechanisms to maintain therapeutic dosing, whilst avoiding development of off target antibody dependent cellular toxicity. Classically, professional phagocytic immune cells are responsible for scavenging and clearance of antibody via interactions with the Fc portion. Immune cells such as macrophages, monocytes, and neutrophils express Fc receptor subsets, such as the FcγR that can then clear immune complexes. Another, the neonatal Fc receptor (FcRn) is key to clearance of IgG in vivo and serum half-life of antibody is explicitly linked to function of this receptor. The liver is a site of significant expression of FcRn and indeed several hepatic cell populations including Kupffer cells and liver sinusoidal endothelial cells (LSEC), play key roles in antibody clearance. This combined with the fact that the liver is a highly perfused organ with a relatively permissive microcirculation means that hepatic binding of antibody has a significant effect on pharmacokinetics of clearance. Liver disease can alter systemic distribution or pharmacokinetics of antibody-based therapies and impact on clinical effectiveness, however, few studies document the changes in key membrane receptors involved in antibody clearance across the spectrum of liver disease. Similarly, the individual contribution of LSEC scavenger receptors to antibody clearance in a healthy or chronically diseased organ is not well characterized. This is an important omission since pharmacokinetic studies of antibody distribution are often based on studies in healthy individuals and thus may not reflect the picture in an aging or chronically diseased population. Therefore, in this review we consider the expression and function of key antibody-binding receptors on LSEC, and the features of therapeutic antibodies which may accentuate clearance by the liver. We then discuss the implications of this for the design and utility of monoclonal antibody-based therapies.


2022 ◽  
Vol 23 (2) ◽  
pp. 604
Author(s):  
Cristiana Tanase ◽  
Ana Maria Enciu ◽  
Elena Codrici ◽  
Ionela Daniela Popescu ◽  
Maria Dudau ◽  
...  

Glioblastoma (GBM) is one of the most aggressive tumors of the central nervous system, characterized by a wide range of inter- and intratumor heterogeneity. Accumulation of fatty acids (FA) metabolites was associated with a low survival rate in high-grade glioma patients. The diversity of brain lipids, especially polyunsaturated fatty acids (PUFAs), is greater than in all other organs and several classes of proteins, such as FA transport proteins (FATPs), and FA translocases are considered principal candidates for PUFAs transport through BBB and delivery of PUFAs to brain cells. Among these, the CD36 FA translocase promotes long-chain FA uptake as well as oxidated lipoproteins. Moreover, CD36 binds and recognizes thrombospondin-1 (TSP-1), an extracellular matrix protein that was shown to play a multifaceted role in cancer as part of the tumor microenvironment. Effects on tumor cells are mediated by TSP-1 through the interaction with CD36 as well as CD47, a member of the immunoglobulin superfamily. TSP-1/CD47 interactions have an important role in the modulation of glioma cell invasion and angiogenesis in GBM. Separately, FA, the two membrane receptors CD36, CD47, and their joint ligand TSP-1 all play a part in GBM pathogenesis. The last research has put in light their interconnection/interrelationship in order to exert a cumulative effect in the modulation of the GBM molecular network.


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Tatiana Barichello ◽  
Jaqueline S. Generoso ◽  
Mervyn Singer ◽  
Felipe Dal-Pizzol

AbstractA biomarker describes a measurable indicator of a patient's clinical condition that can be measured accurately and reproducibly. Biomarkers offer utility for diagnosis, prognosis, early disease recognition, risk stratification, appropriate treatment (theranostics), and trial enrichment for patients with sepsis or suspected sepsis. In this narrative review, we aim to answer the question, "Do biomarkers in patients with sepsis or septic shock predict mortality, multiple organ dysfunction syndrome (MODS), or organ dysfunction?" We also discuss the role of pro- and anti-inflammatory biomarkers and biomarkers associated with intestinal permeability, endothelial injury, organ dysfunction, blood–brain barrier (BBB) breakdown, brain injury, and short and long-term mortality. For sepsis, a range of biomarkers is identified, including fluid phase pattern recognition molecules (PRMs), complement system, cytokines, chemokines, damage-associated molecular patterns (DAMPs), non-coding RNAs, miRNAs, cell membrane receptors, cell proteins, metabolites, and soluble receptors. We also provide an overview of immune response biomarkers that can help identify or differentiate between systemic inflammatory response syndrome (SIRS), sepsis, septic shock, and sepsis-associated encephalopathy. However, significant work is needed to identify the optimal combinations of biomarkers that can augment diagnosis, treatment, and good patient outcomes.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Avelino Corma ◽  
Pablo Botella ◽  
Eva Rivero-Buceta

The administration of cytotoxic drugs in classical chemotherapy is frequently limited by water solubility, low plasmatic stability, and a myriad of secondary effects associated with their diffusion to healthy tissue. In this sense, novel pharmaceutical forms able to deliver selectively these drugs to the malign cells, and imposing a space-time precise control of their discharge, are needed. In the last two decades, silica nanoparticles have been proposed as safe vehicles for antitumor molecules due to their stability in physiological medium, high surface area and easy functionalization, and good biocompatibility. In this review, we focus on silica-based nanomedicines provided with specific mechanisms for intracellular drug release. According to silica nature (amorphous, mesostructured, and hybrids) nanocarriers responding to a variety of stimuli endogenously (e.g., pH, redox potential, and enzyme activity) or exogenously (e.g., magnetic field, light, temperature, and ultrasound) are proposed. Furthermore, the incorporation of targeting molecules (e.g., monoclonal antibodies) that interact with specific cell membrane receptors allows a selective delivery to cancer cells to be carried out. Eventually, we present some remarks on the most important formulations in the pipeline for clinical approval, and we discuss the most difficult tasks to tackle in the near future, in order to extend the use of these nanomedicines to real patients.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Daniel Pinos ◽  
Yueqin Wang ◽  
Patricia Hernández-Martínez ◽  
Kanglai He ◽  
Juan Ferré

The Asian corn borer, Ostrinia furnacalis (Guenée, 1854), is a highly damaging pest in Asia and the Pacific islands, and larvae feed mainly from corn crops. To determine the suitability of Bt-corn technology for the future control of this pest, understanding the potential to develop resistance to Cry1Ab and the basis of cross-resistance to other Cry1 proteins is of great interest. Here, we have explored the binding of Cry1A proteins to brush border membrane vesicles from two O. furnacalis colonies, one susceptible (ACB-BtS) and one laboratory-selected with Cry1Ab (ACB-AbR). The insects developed resistance to Cry1Ab and showed cross-resistance to Cry1Aa, Cry1Ac, and Cry1F. Binding assays with radiolabeled Cry1Ab and brush border membrane vesicles from susceptible insects showed that Cry1A proteins shared binding sites, though the results were not conclusive for Cry1F. The results were confirmed using radiolabeled Cry1Aa. The resistant insects showed a reduction of the specific binding of both Cry1Ab and Cry1Aa, suggesting that part of the binding sites were lost or altered. Competition binding assays showed full competition between Cry1Ab and Cry1Aa proteins in the susceptible colony but only partial competition in resistant insects, confirming the alteration of some, but not all, binding sites for these two proteins. The binding site model for Cry1A proteins in O. furnacalis is in agreement with the occurrence of multiple membrane receptors for these proteins.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 255
Author(s):  
Miao-Miao Tian ◽  
Yu-Xiang Li ◽  
Shan Liu ◽  
Chun-Hao Zhu ◽  
Xiao-Bing Lan ◽  
...  

Neuropathic pain is a refractory disease that occurs across the world and pharmacotherapy has limited efficacy and/or safety. This disease imposes a significant burden on both the somatic and mental health of patients; indeed, some patients have referred to neuropathic pain as being ‘worse than death’. The pharmacological agents that are used to treat neuropathic pain at present can produce mild effects in certain patients, and induce many adverse reactions, such as sedation, dizziness, vomiting, and peripheral oedema. Therefore, there is an urgent need to discover novel drugs that are safer and more effective. Natural compounds from medical plants have become potential sources of analgesics, and evidence has shown that glycosides alleviated neuropathic pain via regulating oxidative stress, transcriptional regulation, ion channels, membrane receptors and so on. In this review, we summarize the epidemiology of neuropathic pain and the existing therapeutic drugs used for disease prevention and treatment. We also demonstrate how glycosides exhibit an antinociceptive effect on neuropathic pain in laboratory research and describe the antinociceptive mechanisms involved to facilitate the discovery of new drugs to improve the quality of life of patients experiencing neuropathic pain.


2021 ◽  
Vol 11 (1) ◽  
pp. 120
Author(s):  
Gabriela Athziri Sánchez-Zuno ◽  
Richard Bucala ◽  
Jorge Hernández-Bello ◽  
Ilce Valeria Román-Fernández ◽  
Mariel García-Chagollán ◽  
...  

Macrophage migration inhibitory factor (MIF) significantly contributes to rheumatoid arthritis (RA) pathogenesis. We aimed to evaluate the canonical (CD74/CD44) and non-canonical MIF receptors (CXCR2,4 and 7) expression and sCD74 to establish their association with RA clinical activity according to DAS28-ESR. Methodology: 101 RA patients with different clinical activities (remission (n = 27), low (n = 16), moderate (n = 35) and high (n = 23)) and 9 control subjects (CS) were included. Expression was evaluated by flow cytometry and levels of soluble CD74 (sCD74) by ELISA. Data analysis was performed with FlowJov10.0, STATAv12.0, and GraphPad Prism v7.0. Results: According to disease activity, CXCR7 expression (percentage of expression and mean fluorescence intensity (MFI)) was higher in granulocytes from patients in remission, while the expression of CXCR4 was higher in patients with high disease activity (p < 0.05). The expression of CD74 was higher in B cells (p < 0.05) and monocytes (p < 0.01) from patients in remission. Regarding sCD74 levels these were higher in patients with high disease activity when compared to those in remission (p <0.05). Conclusions: The results support the need for further study of the role of sCD74 as a soluble MIF decoy receptor, sequestering it to negatively regulate MIF signaling though its membrane receptors. The expression patterns of CXCR4 and CXCR7 show that the latter is a scavenger-type receptor that prevents endocytosis and even degradation of CXCR4 under inflammatory conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marcos S. Cardoso ◽  
Rita F. Santos ◽  
Sarah Almeida ◽  
Mónica Sá ◽  
Begoña Pérez-Cabezas ◽  
...  

Since the pioneering discoveries, by the Nobel laureates Jules Hoffmann and Bruce Beutler, that Toll and Toll-like receptors can sense pathogenic microorganisms and initiate, in vertebrates and invertebrates, innate immune responses against microbial infections, many other families of pattern recognition receptors (PRRs) have been described. One of such receptor clusters is composed by, if not all, at least several members of the scavenger receptor cysteine-rich (SRCR) superfamily. Many SRCR proteins are plasma membrane receptors of immune cells; however, a small subset consists of secreted receptors that are therefore in circulation. We here describe the first characterization of biological and functional roles of the circulating human protein SSC4D, one of the least scrutinized members of the family. Within leukocyte populations, SSC4D was found to be expressed by monocytes/macrophages, neutrophils, and B cells, but its production was particularly evident in epithelial cells of several organs and tissues, namely, in the kidney, thyroid, lung, placenta, intestinal tract, and liver. Similar to other SRCR proteins, SSC4D shows the capacity of physically binding to different species of bacteria, and this opsonization can increase the phagocytic capacity of monocytes. Importantly, we have uncovered the capacity of SSC4D of binding to several protozoan parasites, a singular feature seldom described for PRRs in general and here demonstrated for the first time for an SRCR family member. Overall, our study is pioneer in assigning a PRR role to SSC4D.


2021 ◽  
Vol 23 (1) ◽  
pp. 143
Author(s):  
Andrea Tirincsi ◽  
Mark Sicking ◽  
Drazena Hadzibeganovic ◽  
Sarah Haßdenteufel ◽  
Sven Lang

Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.


2021 ◽  
pp. 1-24
Author(s):  
Shangmin Liu ◽  
Zhanyi Lin

Blood vessels are subjected to mechanical loads of pressure and flow, inducing smooth muscle circumferential and endothelial shear stresses. The perception and response of vascular tissue and living cells to these stresses and the microenvironment they are exposed to are critical to their function and survival. These mechanical stimuli not only cause morphological changes in cells and vessel walls but also can interfere with biochemical homeostasis, leading to vascular remodeling and dysfunction. However, the mechanisms underlying how these stimuli affect tissue and cellular function, including mechanical stimulation-induced biochemical signaling and mechanical transduction that relies on cytoskeletal integrity, are unclear. This review focuses on signaling pathways that regulate multiple biochemical processes in vascular mesangial smooth muscle cells in response to circumferential stress and are involved in mechanosensitive regulatory molecules in response to mechanotransduction, including ion channels, membrane receptors, integrins, cytoskeletal proteins, nuclear structures, and cascades. Mechanoactivation of these signaling pathways is closely associated with vascular remodeling in physiological or pathophysiological states.


Sign in / Sign up

Export Citation Format

Share Document