Pulmonary Vascular Barrier Regulation by Thrombin and Edg Receptors

Author(s):  
Jeffrey R. Jacobson ◽  
Joe G. N. Garcia
2016 ◽  
Vol 17 (4) ◽  
pp. 349-350
Author(s):  
Johanna Pott ◽  
Kevin J Maloy ◽  
Ana Izcue

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Agnieszka Jezierska‐Drutel ◽  
Irina Kolosova ◽  
Alexander D Verin

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Joseph B Mascarenhas ◽  
Ghassan Mouneimne ◽  
Carol C Gregorio ◽  
Mary E Brown ◽  
Ting Wang ◽  
...  

Ena/VASP like protein, or EVL, is an actin-binding protein that regulates cancer cell lamellipodia protrusive activity and cell motility via an actomyosin contractility-dependent mechanism. The function of EVL in human lung endothelial cell (EC) barrier regulation, especially by the endogenous bioactive lipid mediator sphingosine-1-phosphate (S1P), is largely unknown. In this current study, we demonstrated that EVL is an active component in S1P-mediated EC barrier enhancement and lamellipodia formation. Compared to other focal adhesion (FA) proteins such as paxillin, EVL protein expression is very low in human pulmonary endothelial cells (ECs). S1P (1 μM) challenge stimulates translocation of cytosolic EVL to FAs in ECs, which was attenuated by EVL knockdown (KD) by its selective siRNA. S1P also promoted significant EVL translocation to lamellipodia, further confirmed by tracking translocation of EVL-GFP fusion protein upon S1P stimulation in a time-dependent manner. In addition, S1P-mediated cortical actin filament formation is attenuated by EVL KD, further confirming the function of EVL in S1P-induced lamellipodia formation/cortical actin polymerization. S1P stimulates EVL phosphorylation by tyrosine kinase c-Abl which is attenuated by the c-Abl inhibitor, imatinib. Finally, EVL KD attenuated S1P-mediated EC barrier enhancement and paracellular gap resealing reflected by reduced transendothelial electrical resistance (TER) measurements. These findings confirm a novel role for EVL in human lung vascular barrier enhancement and cytoskeleton rearrangement by S1P.


2001 ◽  
Vol 281 (3) ◽  
pp. L565-L574 ◽  
Author(s):  
Alexander D. Verin ◽  
Anna Birukova ◽  
Peiyi Wang ◽  
Feng Liu ◽  
Patrice Becker ◽  
...  

Endothelial cell (EC) barrier regulation is critically dependent on cytoskeletal components (microfilaments and microtubules). Because several edemagenic agents induce actomyosin-driven EC contraction tightly linked to myosin light chain (MLC) phosphorylation and microfilament reorganization, we examined the role of microtubule components in bovine EC barrier regulation. Nocodazole or vinblastine, inhibitors of microtubule polymerization, significantly decreased transendothelial electrical resistance in a dose-dependent manner, whereas pretreatment with the microtubule stabilizer paclitaxel significantly attenuated this effect. Decreases in transendothelial electrical resistance induced by microtubule disruption correlated with increases in lung permeability in isolated ferret lung preparations as well as with increases in EC stress fiber content and MLC phosphorylation. The increases in MLC phosphorylation were attributed to decreases in myosin-specific phosphatase activity without significant increases in MLC kinase activity and were attenuated by paclitaxel or by several strategies (C3 exotoxin, toxin B, Rho kinase inhibition) to inhibit Rho GTPase. Together, these results suggest that microtubule disruption initiates specific signaling pathways that cross talk with microfilament networks, resulting in Rho-mediated EC contractility and barrier dysfunction.


2007 ◽  
Vol 129 (2) ◽  
pp. 179-191 ◽  
Author(s):  
Y. Baumer ◽  
S. Burger ◽  
F. E. Curry ◽  
N. Golenhofen ◽  
D. Drenckhahn ◽  
...  

2019 ◽  
Vol 35 (1) ◽  
pp. 591-613 ◽  
Author(s):  
Urs H. Langen ◽  
Swathi Ayloo ◽  
Chenghua Gu

The vertebrate vasculature displays high organotypic specialization, with the structure and function of blood vessels catering to the specific needs of each tissue. A unique feature of the central nervous system (CNS) vasculature is the blood-brain barrier (BBB). The BBB regulates substance influx and efflux to maintain a homeostatic environment for proper brain function. Here, we review the development and cell biology of the BBB, focusing on the cellular and molecular regulation of barrier formation and the maintenance of the BBB through adulthood. We summarize unique features of CNS endothelial cells and highlight recent progress in and general principles of barrier regulation. Finally, we illustrate why a mechanistic understanding of the development and maintenance of the BBB could provide novel therapeutic opportunities for CNS drug delivery.


Sign in / Sign up

Export Citation Format

Share Document