barrier dysfunction
Recently Published Documents





2022 ◽  
Vol 12 ◽  
Qi You ◽  
Yiming Shen ◽  
Yiling Wu ◽  
Yuyan Li ◽  
Chang Liu ◽  

Increased formation of neutrophil extracellular traps (NETs) is associated with gut leakage in type 1 diabetes (T1D). To explore the mechanism of how enteropathy exacerbated by NETs triggers pancreatic autoimmunity in T1D, we carried out a correlation analysis for NET formation with gut barrier functions and autoimmunity in nonobese diabetic (NOD) mice. Inducing chronic colitis or knocking out of peptidyl arginine deiminase type 4 (PAD4) in NOD mice were used to further study the effect of NET formation on the progression of T1D. Microbial alterations in Deferribacteres and Proteobacteria, along with the loss of gut barrier function, were found to be associated with increased endotoxin and abnormal formation of NETs in NOD mice. Both DSS-induced colitis and knockout of PAD4 in NOD mice indicated that PAD4-dependent NET formation was involved in the aggravation of gut barrier dysfunction, the production of autoantibodies, and the activation of enteric autoimmune T cells, which then migrated to pancreatic lymph nodes (PLNs) and caused self-damage. The current study thus provides evidence that PAD4-dependent NET formation is engaged in leaky gut triggering pancreatic autoimmunity and suggests that either degradation of NETs or inhibition of NET formation may be helpful for innovative therapeutic interventions in T1D.

2022 ◽  
Vol 12 ◽  
Francesca Racca ◽  
Gaia Pellegatta ◽  
Giuseppe Cataldo ◽  
Edoardo Vespa ◽  
Elisa Carlani ◽  

Eosinophilic esophagitis (EoE) is a chronic immune-mediated disease of the esophagus characterized clinically by symptoms related to esophageal dysfunction and histologically by eosinophil-predominant inflammation, whose incidence is rising. It significantly affects patients’ quality of life and, if left untreated, results in fibrotic complications. Although broad consensus has been achieved on first-line therapy, a subset of patients remains non-responder to standard therapy. The pathogenesis of EoE is multifactorial and results from the complex, still mostly undefined, interaction between genetics and intrinsic factors, environment, and antigenic stimuli. A deep understanding of the pathophysiology of this disease is pivotal for the development of new therapies. This review provides a comprehensive description of the pathophysiology of EoE, starting from major pathogenic mechanisms (genetics, type 2 inflammation, epithelial barrier dysfunction, gastroesophageal reflux, allergens, infections and microbiota) and subsequently focusing on the single protagonists of type 2 inflammation (involved cells, cytokines, soluble effectors, surface proteins and transcription factors) that could represent present and future therapeutic targets, while summarizing previous therapeutic approaches in literature.

Marilu Jurado-Flores ◽  
Firas Warda ◽  
Arshag Mooradian

Abstract Thyroid hormones (TH) have a cardinal role in the development of the central nervous system during embryogenesis and early infancy. However, the TH responsive genes in the developing brain cease to respond to TH in adulthood. Nevertheless, thyroid dysfunction in adults is commonly associated with a host of cognitive and psychiatric problems. Cognitive decline, dysphoria and depression are common manifestations of overt hypothyroidism while hyperthyroidism can cause agitation, acute psychosis and apathy especially in older people. Whereas levothyroxine treatment can reverse dementia in the setting of hypothyroidism, the effect of levothyroxine on depressive symptoms in subjects with subclinical hypothyroidism is controversial. The use of supraphysiologic doses of TH to treat depression refractory to antidepressant remains a viable therapeutic tool with the caveat that excessive doses of thyroid hormone to treat depression may have potentially damaging effects on other organ systems. The present communication describes the pathophysiology of neuropsychiatric manifestations of thyroid disease including changes in neurotransmission, alterations in neuronal or glial cell gene expression, blood-brain barrier dysfunction, increased risk of cerebrovascular disease and occasionally cerebral inflammatory disease in the context of autoimmune thyroid disease. Elucidating the molecular mechanisms of TH effect on cerebral tissue will help identify novel therapeutic targets for managing people with neuropsychiatric disorders.

Blood ◽  
2022 ◽  
Robert Flaumenhaft ◽  
Keiichi Enjyoji ◽  
Alec A Schmaier

COVID-19 is a primary respiratory illness that is frequently complicated by systemic involvement of the vasculature. Vascular involvement leads to an array of complications ranging from thrombosis to pulmonary edema secondary to loss of barrier function. This review will address the vasculopathy of COVID-19 with a focus on the role of the endothelium in orchestrating the systemic response to SARS-CoV-2 infection. The endothelial receptor systems and molecular pathways activated in the setting of COVID-19 and the consequences of these inflammatory and prothrombotic changes on endothelial cell function will be discussed. The sequelae of COVID-19 vascular involvement at the level of organ systems will also be addressed, with an emphasis on the pulmonary vasculature, but with consideration of effects on other vascular beds. The dramatic changes in endothelial phenotypes associated with COVID-19 has enabled the identification of biomarkers that could help guide therapy and predict outcomes. Knowledge of vascular pathogenesis in COVID-19 has also informed therapeutic approaches that may control its systemic sequelae. Since our understanding of vascular response in COVID-19 continues to evolve, we will consider areas of controversy, such as the extent to which SARS-CoV-2 directly infects endothelium and the degree to which vascular responses to SARS-CoV-2 are unique or common to those of other viruses capable of causing severe respiratory disease. This conceptual framework describing how SARS-CoV-2 infection affects endothelial inflammation, prothrombotic transformation, and barrier dysfunction will provide a context for interpreting new information as it arises addressing the vascular complications of COVID-19.

2022 ◽  
pp. 1-13
Zhihong Bian ◽  
Xia Liu ◽  
Tian Feng ◽  
Haibo Yu ◽  
Xiao Hu ◽  

Background: Recent studies have revealed that atrial fibrillation (AF) patients have a high risk of developing cognitive impairment, vascular dementia, and Alzheimer’s disease (AD). Some reports suggest that the application of oral anticoagulant with an appropriate dose may have a preventive effect on AD. However, which oral anticoagulant drug is more appropriate for preventing AD and the underlying mechanism(s) is still unknown. Objective: The aim of the present study was to assess the treatment effect of rivaroxaban administration as well as investigate the roles of PAR-1 and PAR-2 in the AD + CAA mice model. Methods: In the present study, we compared a traditional oral anticoagulant, warfarin, and a direct oral anticoagulant (DOAC), rivaroxaban, via long-term administration to an AD with cerebral amyloid angiopathy (CAA) mice model. Results: Rivaroxaban treatment attenuated neuroinflammation, blood-brain barrier dysfunction, memory deficits, and amyloid-β deposition through PAR-1/PAR-2 inhibition in the AD + CAA mice model compared with warfarin and no-treatment groups. Conclusion: The present study demonstrates that rivaroxaban can attenuate AD progress and can be a potential choice to prevent AD.

2022 ◽  
Vol 12 ◽  
Teresa Lopes Gomes ◽  
Virgínia de Oliveira-Marques ◽  
Richard John Hampson ◽  
António Jacinto ◽  
Luciana Vieira de Moraes ◽  

Tight junctions (TJ) are formed by transmembrane and intracellular proteins that seal the intercellular space and control selective permeability of epithelia. Integrity of the epithelial barrier is central to tissue homeostasis and barrier dysfunction has been linked to many pathological conditions. TJ support the maintenance of cell polarity through interactions with the Par complex (Cdc42-Par-6-Par-3-aPKC) in which Par-6 is an adaptor and links the proteins of the complex together. Studies have shown that Par-6 overexpression delays the assembly of TJ proteins suggesting that Par-6 negatively regulates TJ assembly. Because restoring barrier integrity is of key therapeutic and prophylactic value, we focus on finding compounds that have epithelial barrier reinforcement properties; we developed a screening platform (theLiTE™) to identify compounds that modulate Par-6 expression in follicular epithelial cells from Par-6-GFP Drosophila melanogaster egg chambers. Hits identified were then tested whether they improve epithelial barrier function, using measurements of transepithelial electrical resistance (TEER) or dye efflux to evaluate paracellular permeability. We tested 2,400 compounds, found in total 10 hits. Here we present data on six of them: the first four hits allowed us to sequentially build confidence in theLiTE™ and two compounds that were shortlisted for further development (myricetin and quercetin). We selected quercetin due to its clinical and scientific validation as a compound that regulates TJ; food supplement formulated on the basis of this discovery is currently undergoing clinical evaluation in gastroesophageal reflux disease (GERD) sufferers.

2022 ◽  
Vol 29 ◽  
Anna-Maria Louka ◽  
Dimitrios Sagris ◽  
George Ntaios

Abstract: Stroke is one of the most devastating manifestations of cardiovascular disease. Growing age, arterial hypertension, and atherosclerosis are identified as independent risk factors for stroke, primarily due to structural and functional alterations in the cerebrovascular tree. Recent data from in vitro and clinical studies have suggested that the immune system influences atherosclerosis, promoting vascular stiffness and vascular aging and contributing to ischemic stroke, intracranial haemorrhage and microbleeds, white matter disease, and cognitive decline. Furthermore, aging is related to a chronic low-grade inflammatory state, in which macrophage, neutrophils, natural killer (NK cells), and B and T lymphocytes act as major effectors of the immune-mediated cell responses. Moreover, oxidative stress and vascular inflammation are correlated with endothelial dysfunction, vascular aging, blood-brain barrier disruption, lacunar lesions, and neurodegenerative disorders. This review discusses the pathophysiological roles of fundamental cellular and molecular mechanisms of aging, including the complex interplay between them and innate immunity, as well as vascular dysfunction, arterial stiffness, atherosclerosis, atherothrombosis, systemic inflammation, and blood-brain barrier dysfunction.

2022 ◽  
Lei Wang ◽  
Pan Zhang ◽  
Chao Li ◽  
Fei Xu ◽  
Jie Chen

Obesity-induced colonic inflammation-stimulated colitis is one of the main causes of colorectal cancer. Dietary polysaccharides are considered an effective agent for relieving obesity-induced inflammatory diseases such as diabetes and colitis....

Sign in / Sign up

Export Citation Format

Share Document