scholarly journals Distance Information for Disordered Proteins from NMR and ESR Measurements Using Paramagnetic Spin Labels

Author(s):  
David Eliezer
2021 ◽  
Vol 8 ◽  
Author(s):  
Irina Ritsch ◽  
Laura Esteban-Hofer ◽  
Elisabeth Lehmann ◽  
Leonidas Emmanouilidis ◽  
Maxim Yulikov ◽  
...  

Function of intrinsically disordered proteins may depend on deviation of their conformational ensemble from that of a random coil. Such deviation may be hard to characterize and quantify, if it is weak. We explored the potential of distance distributions between spin labels, as they can be measured by electron paramagnetic resonance techniques, for aiding such characterization. On the example of the intrinsically disordered N-terminal domain 1–267 of fused in sarcoma (FUS) we examined what such distance distributions can and cannot reveal on the random-coil reference state. On the example of the glycine-rich domain 188–320 of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) we studied whether deviation from a random-coil ensemble can be robustly detected with 19 distance distribution restraints. We discuss limitations imposed by ill-posedness of the conversion of primary data to distance distributions and propose overlap of distance distributions as a fit criterion that can tackle this problem. For testing consistency and size sufficiency of the restraint set, we propose jack-knife resampling. At current desktop computers, our approach is expected to be viable for domains up to 150 residues and for between 10 and 50 distance distribution restraints.


2017 ◽  
Vol 112 (3) ◽  
pp. 316a
Author(s):  
Enrico Zurlo ◽  
Nico J. Meeuwenoord ◽  
Dmitri V. Filippov ◽  
Martina Huber

2000 ◽  
Author(s):  
Eric S. Covey ◽  
Laura A. Carlson-Radvansky

2000 ◽  
Author(s):  
Geoffrey P. Bingham ◽  
J. Alexander Shull
Keyword(s):  

2019 ◽  
Author(s):  
Ruchi Lohia ◽  
Reza Salari ◽  
Grace Brannigan

<div>The role of electrostatic interactions and mutations that change charge states in intrinsically disordered proteins (IDPs) is well-established, but many disease-associated mutations in IDPs are charge-neutral. The Val66Met single nucleotide polymorphism (SNP) encodes a hydrophobic-to-hydrophobic mutation at the midpoint of the prodomain of precursor brain-derived neurotrophic factor (BDNF), one of the earliest SNPs to be associated with neuropsychiatric disorders, for which the underlying molecular mechanism is unknown. Here we report on over 250 μs of fully-atomistic, explicit solvent, temperature replica exchange molecular dynamics simulations of the 91 residue BDNF prodomain, for both the V66 and M66 sequence.</div><div>The simulations were able to correctly reproduce the location of both local and non-local secondary changes due to the Val66Met mutation when compared with NMR spectroscopy. We find that the local structure change is mediated via entropic and sequence specific effects. We show that the highly disordered prodomain can be meaningfully divided into domains based on sequence alone. Monte Carlo simulations of a self-excluding heterogeneous polymer, with monomers representing each domain, suggest the sequence would be effectively segmented by the long, highly disordered polyampholyte near the sequence midpoint. This is qualitatively consistent with observed interdomain contacts within the BDNF prodomain, although contacts between the two segments are enriched relative to the self-excluding polymer. The Val66Met mutation increases interactions across the boundary between the two segments, due in part to a specific Met-Met interaction with a Methionine in the other segment. This effect propagates to cause the non-local change in secondary structure around the second methionine, previously observed in NMR. The effect is not mediated simply via changes in inter-domain contacts but is also dependent on secondary structure formation around residue 66, indicating a mechanism for secondary structure coupling in disordered proteins. </div>


Sign in / Sign up

Export Citation Format

Share Document