distance information
Recently Published Documents


TOTAL DOCUMENTS

485
(FIVE YEARS 148)

H-INDEX

32
(FIVE YEARS 6)

Author(s):  
Johann Carlo Marasigan ◽  
Gian Paolo Mayuga ◽  
Elmer Magsino

<span lang="EN-US">Traffic congestion is a constant problem for cities worldwide. The human driving inefficiency and poor urban planning and development contribute to traffic buildup and travel discomfort. An example of human inefficiency is the phantom traffic jam, which is caused by unnecessary braking, causing traffic to slow down, and eventually coming to a stop. In this study, a brake and acceleration feature (BAF) for the advanced driver assistance system (ADAS) is proposed to mitigate the effects of the phantom traffic phenomenon. In its initial stage, the BAF provides a heads-up display that gives information on how much braking and acceleration input is needed to maintain smooth driving conditions, i.e., without sudden acceleration or deceleration, while observing a safe distance from the vehicle in front. BAF employs a fuzzy logic controller that takes distance information from a light detection and ranging (LIDAR) sensor and the vehicle’s instantaneous speed from the engine control unit (ECU). It then calculates the corresponding percentage value of needed acceleration and braking in order to maintain travel objectives of smooth and safe-distance travel. Empirical results show that the system suggests acceleration and braking values slightly higher than the driver’s actual inputs and can achieve 90% accuracy overall.</span>


2021 ◽  
Vol 21 (6) ◽  
pp. 63-70
Author(s):  
Jaehwan Kwak ◽  
Namgyun Kim ◽  
Man-Il Kim

The Gangwon region (Korea) is severely affected by forest fires, where approximately sixty-six wildfires have occurred over the last three years, which in turn have damaged 1299 ha of this region. Hence, it is necessary to develop schemes for reducing the damage caused by forest fires in Gangwon. In this study, we developed an algorithm for planning evacuation routes. The developed algorithm was applied to a virtual scenario for determining evacuation start points within the spread range of wildfires, fifteen evacuation routes were then determined for each start point, and the associated distance information was displayed. Furthermore, by employing the Naver Maps software, the obtained evacuation routes was compared and analyzed with respect to the route distance. We believe that the results obtained from this study can be used as basic data for making decisions to identify various evacuation routes.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yuxing Li ◽  
Shangbin Jiao ◽  
Bo Geng ◽  
Xinru Jiang

Dispersion entropy (DE), as a newly proposed entropy, has achieved remarkable results in its application. In this paper, on the basis of DE, combined with coarse-grained processing, we introduce the fluctuation and distance information of signal and propose the refined composite multiscale fluctuation-based reverse dispersion entropy (RCMFRDE). As an emerging complexity analysis mode, RCMFRDE has been used for the first time for the feature extraction of ship-radiated noise signals to mitigate the loss caused by the misclassification of ships on the ocean. Meanwhile, a classification and recognition method combined with K-nearest neighbor (KNN) came into being, namely, RCMFRDE-KNN. The experimental results indicated that RCMFRDE has the highest recognition rate in the single feature case and up to 100% in the double feature case, far better than multiscale DE (MDE), multiscale fluctuation-based DE (MFDE), multiscale permutation entropy (MPE), and multiscale reverse dispersion entropy (MRDE), and all the experimental results show that the RCMFRDE proposed in this paper improves the separability of the commonly used entropy in the hydroacoustic domain.


2021 ◽  
Vol 4 ◽  
pp. 1-5
Author(s):  
Julian Keil ◽  
Annika Korte ◽  
Dennis Edler ◽  
Denise O‘Meara ◽  
Frank Dickmann

Abstract. Modern Virtual Reality (VR) applications often use artificial locomotion to allow users to travel distances within VR space that exceed the available space used to transfer real-world and real-time motion into the virtual environment. The locomotion speed is usually not fixed and can be selected dynamically by the user. Due to motion adaptation effects, variations of locomotion speed could affect how distances in VR are perceived. In the context of cartographic VR applications aimed to experience and communicate spatial information, such effects on distance perception could be problematic, because they might lead to distortions in cognitive representations of space acquired via interaction with VR environments. By conducting a VR-based distance estimation study, we demonstrate how changes of artificial locomotion speed affect distance estimations in VR. Increasing locomotion speeds after letting users adapt to a lower locomotion speed led to lower distance estimations and decreasing locomotion speeds led to higher distance estimations. These findings should sensitize VR developers to consider the choice of applied locomotion techniques when a developed VR application is supposed to communicate distance information or to support the acquisition of a cognitive representation of geographic space.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8028
Author(s):  
Dongqing Zhao ◽  
Dongmin Wang ◽  
Minzhi Xiang ◽  
Jinfei Li ◽  
Chaoyong Yang ◽  
...  

The wide use of cooperative missions using multiple unmanned platforms has made relative distance information an essential factor for cooperative positioning and formation control. Reducing the range error effectively in real time has become the main technical challenge. We present a new method to deal with ranging errors based on the distance increment (DI). The DI calculated by dead reckoning is used to smooth the DI obtained by the cooperative positioning, and the smoothed DI is then used to detect and estimate the non-line-of-sight (NLOS) error as well as to smooth the observed values containing random noise in the filtering process. Simulation and experimental results show that the relative accuracy of NLOS estimation is 8.17%, with the maximum random error reduced by 40.27%. The algorithm weakens the influence of NLOS and random errors on the measurement distance, thus improving the relative distance precision and enhancing the stability and reliability of cooperative positioning.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Rong Wang

The use of neural machine algorithms for English translation is a hot topic in the current research. English translation using the traditional sequential neural framework, which is too poor at capturing long-distance information, has its own major limitations. However, the current improved frameworks, such as recurrent neural network translation, are not satisfactory either. In this paper, we establish an attention coding and decoding model to address the shortcomings of traditional machine translation algorithms, combine the attention mechanism with a neural network framework, and implement the whole English translation system based on TensorFlow, thus improving the translation accuracy. The experimental test results show that the BLUE values of the algorithm model built in this paper are improved to different degrees compared with the traditional machine learning algorithms, which proves that the performance of the proposed algorithm model is significantly improved compared with the traditional model.


2021 ◽  
Vol 13 (22) ◽  
pp. 4616
Author(s):  
Shijie Zhao ◽  
Wei Zheng ◽  
Zhaowei Li ◽  
Aigong Xu ◽  
Huizhong Zhu

In this study, we improve the matching accuracy of underwater gravity matching navigation. Firstly, the Iterative Optimal Annulus Point (IOAP) method with a novel grid topology is proposed for breaking through the inherent grid structure limit of the canonical gravity matching algorithm and enhancing its underwater gravity matching accuracy. The theory of IOAP is as follows: (1) small-annulus matching and positioning mechanism on the tracking starting point is developed by employing the starting point and drift error of the INS (Inertial Navigation System), the fixed rotation angle, etc. The optimal matching location of the starting point is obtained by matching and comparing the matched points in this small-annulus grid, which contributes to heightening the initial-position error insensitivity of the algorithms. (2) Variable-angle three-layer annulus matching and positioning mechanisms on the tracking ending point were constructed by using the optimal matching location of the starting point and combining the tracking direction-and-distance information of the INS and the cumulative drift error, etc. It is used to generate the annulus matching points with the ring-type grid topology. (3) The optimal matching position of the ending point in this annulus is obtained by iteratively calculating the evaluation index value of the matching points and following the evaluation index optimal rule. Secondly, we comprehensively consider the main performance evaluation indexes of the underwater gravity matching algorithms, such as the statistical indicators of the matching accuracy, the average matching time and the matching success rate, and take them as a basis of the pros and cons of the matching analysis. Furthermore, under conditions that include different scale searching regions or different reference-angle ring radii, the statistical results verify that the IOAP had a different matching ability and better robustness. Finally, several trajectories with the starting points from different areas and the ending points in different gravity ranges are tested and compared to carry out the numerical simulations. These results indicate that the IOAP has many advantages, such as a high matching accuracy and strong positioning applicability in different gravity regions. Compared with the TERCOM (terrain contour matching algorithm), its average matching accuracy was the highest, increased by 40.39%.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kamal Choudhary ◽  
Brian DeCost

AbstractGraph neural networks (GNN) have been shown to provide substantial performance improvements for atomistic material representation and modeling compared with descriptor-based machine learning models. While most existing GNN models for atomistic predictions are based on atomic distance information, they do not explicitly incorporate bond angles, which are critical for distinguishing many atomic structures. Furthermore, many material properties are known to be sensitive to slight changes in bond angles. We present an Atomistic Line Graph Neural Network (ALIGNN), a GNN architecture that performs message passing on both the interatomic bond graph and its line graph corresponding to bond angles. We demonstrate that angle information can be explicitly and efficiently included, leading to improved performance on multiple atomistic prediction tasks. We ALIGNN models for predicting 52 solid-state and molecular properties available in the JARVIS-DFT, Materials project, and QM9 databases. ALIGNN can outperform some previously reported GNN models on atomistic prediction tasks by up to 85% in accuracy with better or comparable model training speed.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Bin Huang ◽  
Guozheng Wei ◽  
Bing Wang ◽  
Fusong Ju ◽  
Yi Zhong ◽  
...  

Abstract Background Optical maps record locations of specific enzyme recognition sites within long genome fragments. This long-distance information enables aligning genome assembly contigs onto optical maps and ordering contigs into scaffolds. The generated scaffolds, however, often contain a large amount of gaps. To fill these gaps, a feasible way is to search genome assembly graph for the best-matching contig paths that connect boundary contigs of gaps. The combination of searching and evaluation procedures might be “searching followed by evaluation”, which is infeasible for long gaps, or “searching by evaluation”, which heavily relies on heuristics and thus usually yields unreliable contig paths. Results We here report an accurate and efficient approach to filling gaps of genome scaffolds with aids of optical maps. Using simulated data from 12 species and real data from 3 species, we demonstrate the successful application of our approach in gap filling with improved accuracy and completeness of genome scaffolds. Conclusion Our approach applies a sequential Bayesian updating technique to measure the similarity between optical maps and candidate contig paths. Using this similarity to guide path searching, our approach achieves higher accuracy than the existing “searching by evaluation” strategy that relies on heuristics. Furthermore, unlike the “searching followed by evaluation” strategy enumerating all possible paths, our approach prunes the unlikely sub-paths and extends the highly-probable ones only, thus significantly increasing searching efficiency.


Sign in / Sign up

Export Citation Format

Share Document