proteins and peptides
Recently Published Documents


TOTAL DOCUMENTS

1428
(FIVE YEARS 236)

H-INDEX

89
(FIVE YEARS 10)

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 169
Author(s):  
Jon M. Fukuto ◽  
Cristina Perez-Ternero ◽  
Jessica Zarenkiewicz ◽  
Joseph Lin ◽  
Adrian J. Hobbs ◽  
...  

S-Nitrosothiol (RS-NO) formation in proteins and peptides have been implicated as factors in the etiology of many diseases and as possible regulators of thiol protein function. They have also been proposed as possible storage forms of nitric oxide (NO). However, despite their proposed functions/roles, there appears to be little consensus regarding the physiological mechanisms of RS-NO formation and degradation. Hydropersulfides (RSSH) have recently been discovered as endogenously generated species with unique reactivity. One important reaction of RSSH is with RS-NO, which leads to the degradation of RS-NO as well as the release of NO. Thus, it can be speculated that RSSH can be a factor in the regulation of steady-state RS-NO levels, and therefore may be important in RS-NO (patho)physiology. Moreover, RSSH-mediated NO release from RS-NO may be a possible mechanism allowing RS-NO to serve as a storage form of NO.


Biologics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 45-55
Author(s):  
Muhammad Muzammal ◽  
Muzammil Ahmad Khan ◽  
Mohammed Al Mohaini ◽  
Abdulkhaliq J. Alsalman ◽  
Maitham A. Al Hawaj ◽  
...  

Venom from different organisms was used in ancient times to treat a wide range of diseases, and to combat a variety of enveloped and non-enveloped viruses. The aim of this in silico research was to investigate the impact of honeybee venom proteins and peptides against Ebola virus. In the current in silico study, different online and offline tools were used. RaptorX (protein 3D modeling) and PatchDock (protein–protein docking) were used as online tools, while Chimera and LigPlot + v2.1 were used for visualizing protein–protein interactions. We screened nine venom proteins and peptides against the normal Ebola virus spike protein and found that melittin, MCD and phospholipase A2 showed a strong interaction. We then screened these peptides and proteins against mutated strains of Ebola virus and found that the enzyme phospholipase A2 showed a strong interaction. According to the findings, phospholipase A2 found in honeybee venom may be an effective source of antiviral therapy against the deadly Ebola virus. Although the antiviral potency of phospholipase A2 has been recorded previously, this is the first in silico analysis of honeybee phospholipase A2 against the Ebola viral spike protein and its more lethal mutant strain.


2022 ◽  
pp. 517-534
Author(s):  
Samuel Fernández-Tomé ◽  
Lourdes Amigo ◽  
Cristina Martínez-Villaluenga ◽  
Blanca Hernández-Ledesma

Author(s):  
Chayasith Uttamapinant ◽  
Kanokpol Aphicho ◽  
Narongyot Kittipanukul

Genetic code expansion has emerged as an enabling tool to provide insight into functions of understudied proteinogenic species such as small proteins and peptides, and to probe protein biophysics in the cellular context. Here we discuss recent technical advances and applications of genetic code expansion in cellular imaging of complex mammalian protein species, along with considerations and challenges upon using the method.


Author(s):  
Julio Bernal-Chanchavac ◽  
Md Al-Amin ◽  
Nicholas Stephanopoulos

: The use of biological molecules with programmable self-assembly properties is an attractive route to functional nanomaterials. Proteins and peptides have been used extensively for these systems due to their biological relevance and large number of supramolecular motifs, but it is still difficult to build highly anisotropic and programmable nanostructures due to their high complexity. Oligonucleotides, by contrast, have the advantage of programmability and reliable assembly, but lack biological and chemical diversity. In this review, we discuss systems that merge protein or peptide self-assembly with the addressability of DNA. We outline the various self-assembly motifs used, the chemistry for linking polypeptides with DNA, and the resulting nanostructures that can be formed by the interplay of these two molecules. Finally, we close by suggesting some interesting future directions in hybrid polypeptide-DNA nanomaterials, and potential applications for these exciting hybrids.


2021 ◽  
Author(s):  
Takeshi Masuda ◽  
Yuma Inamori ◽  
Arisu Furukawa ◽  
Kazuki Momosaki ◽  
Chih-Hsiang Chang ◽  
...  

Recent advances in single-cell proteomics highlight the promise of sensitive analyses in limited cell populations. However, technical challenges remain for sample recovery, throughput, and versatility. Here, we first report a water droplet-in-oil digestion (WinO) method based on carboxyl-coated beads and phase transfer surfactants for proteomic analysis using limited sample amounts. This method was developed to minimize the contact area between the sample solution and the container to reduce the loss of proteins and peptides by adsorption. This method increased protein and peptide recovery 10-fold as well as the number of quantified transmembrane proteins compared to an in-solution digestion (ISD) method. The proteome profiles obtained from 100 cells using the WinO method highly correlated with those from 10000 cells using the ISD method. We successfully applied the WinO method to single-cell proteomics and quantified 462 proteins. Using the WinO method, samples can be easily prepared in a multi-well plate, making it a widely applicable and suitable method for single-cell proteomics.


2021 ◽  
Vol 22 (24) ◽  
pp. 13312
Author(s):  
Marialuisa Siepi ◽  
Rosario Oliva ◽  
Antonio Masino ◽  
Rosa Gaglione ◽  
Angela Arciello ◽  
...  

Environment-sensitive fluorophores are very valuable tools in the study of molecular and cellular processes. When used to label proteins and peptides, they allow for the monitoring of even small variations in the local microenvironment, thus acting as reporters of conformational variations and binding events. Luciferin and aminoluciferin, well known substrates of firefly luciferase, are environment-sensitive fluorophores with unusual and still-unexploited properties. Both fluorophores show strong solvatochromism. Moreover, luciferin fluorescence is influenced by pH and water abundance. These features allow to detect local variations of pH, solvent polarity and local water concentration, even when they occur simultaneously, by analyzing excitation and emission spectra. Here, we describe the characterization of (amino)luciferin-labeled derivatives of four bioactive peptides: the antimicrobial peptides GKY20 and ApoBL, the antitumor peptide p53pAnt and the integrin-binding peptide RGD. The two probes allowed for the study of the interaction of the peptides with model membranes, SDS micelles, lipopolysaccharide micelles and Escherichia coli cells. Kd values and binding stoichiometries for lipopolysaccharide were also determined. Aminoluciferin also proved to be very well-suited to confocal laser scanning microscopy. Overall, the characterization of the labeled peptides demonstrates that luciferin and aminoluciferin are previously neglected environment-sensitive labels with widespread potential applications in the study of proteins and peptides.


2021 ◽  
pp. 298-322
Author(s):  
Sehar Aslam ◽  
Samman Munir ◽  
Muhammad Shareef Masoud ◽  
Usman Ali Ashfaq ◽  
Nazia Nahid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document