Author(s):  
JORDI CASTRO

Minimum distance controlled tabular adjustment is a recent perturbative approach for statistical disclosure control in tabular data. Given a table to be protected, it looks for the closest safe table, using some particular distance. Controlled adjustment is known to provide high data utility. However, the disclosure risk has only been partially analyzed using theoretical results from optimization. This work extends these previous results, providing both a more detailed theoretical analysis, and an extensive empirical assessment of the disclosure risk of the method. A set of 25 instances from the literature and four different attacker scenarios are considered, with several random replications for each scenario, both for L1 and L2 distances. This amounts to the solution of more than 2000 optimization problems. The analysis of the results shows that the approach has low disclosure risk when the attacker has no good information on the bounds of the optimization problem. On the other hand, when the attacker has good estimates of the bounds, and the only uncertainty is in the objective function (which is a very strong assumption), the disclosure risk of controlled adjustment is high and it should be avoided.


2012 ◽  
Vol 9 (1) ◽  
Author(s):  
Neeraj Tiwari

The most common method of providing data to the public is through statistical tables. The problem of protecting confidentiality in statistical tables containing sensitive information has been of great concern during the recent years. Rounding methods are perturbation techniques widely used by statistical agencies for protecting the confidential data. Random rounding is one of these methods. In this paper, using the technique of random rounding and quadratic programming, we introduce a new methodology for protecting the confidential information of tabular data with minimum loss of information. The tables obtained through the proposed method consist of unbiasedly rounded values, are additive and have specified level of confidentiality protection. Some numerical examples are also discussed to demonstrate the superiority of the proposed procedure over the existing procedures.


2010 ◽  
Vol 37 (4) ◽  
pp. 3256-3263 ◽  
Author(s):  
Jun-Lin Lin ◽  
Tsung-Hsien Wen ◽  
Jui-Chien Hsieh ◽  
Pei-Chann Chang

2020 ◽  
Vol 3 (348) ◽  
pp. 7-24
Author(s):  
Michał Pietrzak

The aim of this article is to analyse the possibility of applying selected perturbative masking methods of Statistical Disclosure Control to microdata, i.e. unit‑level data from the Labour Force Survey. In the first step, the author assessed to what extent the confidentiality of information was protected in the original dataset. In the second step, after applying selected methods implemented in the sdcMicro package in the R programme, the impact of those methods on the disclosure risk, the loss of information and the quality of estimation of population quantities was assessed. The conclusion highlights some problematic aspects of the use of Statistical Disclosure Control methods which were observed during the conducted analysis.


Sign in / Sign up

Export Citation Format

Share Document