scholarly journals Storing and Querying Semantic Data in the Cloud

Author(s):  
Daniel Janke ◽  
Steffen Staab
Keyword(s):  
Robotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Camilla Follini ◽  
Valerio Magnago ◽  
Kilian Freitag ◽  
Michael Terzer ◽  
Carmen Marcher ◽  
...  

The application of robotics in construction is hindered by the site environment, which is unstructured and subject to change. At the same time, however, buildings and corresponding sites can be accurately described by Building Information Modeling (BIM). Such a model contains geometric and semantic data about the construction and operation phases of the building and it is already available at the design phase. We propose a method to leverage BIM for simple yet efficient deployment of robotic systems for construction and operation of buildings. With our proposed approach, BIM is used to provide the robot with a priori geometric and semantic information on the environment and to store information on the operation progress. We present two applications that verify the effectiveness of our proposed method. This system represents a step forward towards an easier application of robots in construction.


Author(s):  
Cassio Melo ◽  
Alexander Mikheev ◽  
Benedicte Le-Grand ◽  
Marie-Aude Aufaure

Author(s):  
Scott G. Danielson

Abstract An engineering database modeling telephone outside plant networks is developed. Semantic and relational database design methodologies are used with the semantic data model developed based on an extended entity-relationship approach. This logical model is used to generate a normalized relational data structure. This database holds engineering data supporting engineering analyses, engineering work order generation procedures, and network planning activities. The database has been linked to separate network analysis programs and CAD-based network maps by a database application.


Author(s):  
Uwe Weissflog

Abstract This paper provides an overview of methods and ideas to achieve data integration in CIM. It describes a dictionary approach allowing participating applications to define their common constructs gradually as an additional service across application systems. Because of the importance of product definition data, the role of PDES/STEP as part of this dictionary approach is also described. The technical concepts of the dictionary, such as schema mapping, semantic data model, user methods and the required additions within participating applications are explained. Problems related to data integrity, data redundancy, performance and binding of dissimilar software components are discussed as well as the deficiencies related to today’s data modelling capabilities. The added value an active dictionary can provide to a CIM environment consisting of established applications in heterogeneous environments, where migration into one standardized homogeneous set of CIM applications is not likely, is also explained.


2021 ◽  
Author(s):  
Renata Barros ◽  
Kris Piessens ◽  
the GeoConnect³d team

<p>The transition towards a clean and low carbon energy system in Europe will increasingly rely on the use of the subsurface. Despite the vastness of subsurface space, only a fraction of it is suitable for the exploitation of geo-resources. The distribution and fitting combination of required conditions is determined by geological processes. We are, therefore, constrained in where we can develop resources and capacities. Moreover, increased subsurface use in a restricted area will inevitably lead to high chances of interferences and conflicts of interest. This means that sound geological information is essential to optimise the subsurface contribution to a safe and efficient energy transition.</p><p>Within this scope, the main goal of the GeoConnect³d project is to convert existing geological data into an information system that can be used for various geo-applications, decision-making, and subsurface spatial planning. This is being accomplished through the innovative structural framework model, which reorganises, contextualises, and adds value to geological data. The model is primarily focused on geological limits, or broadly planar structures that separate a given geological unit from its neighbouring units. It also includes geomanifestations, highlighting any distinct local expression of ongoing or past geological processes. These manifestations, or anomalies, often point to specific geologic conditions and, therefore, can be important sources of information to improve geological understanding of an area.</p><p>Geological data in this model are composed of spatial data at different scales, with a one-to-one link between geometries and their specific attributes (including uncertainties), and of semantic data, with data organised conceptually and categorised and/or linked using SKOS hierarchical and generic schemes. Concepts and geometries are linked by a one-to-many relationship. The combination of these elements then results in a multi-scale, harmonised and robust model.</p><p>The structural framework-geomanifestations methodology has now been applied to different areas in Europe. The focus on geological limits brings various advantages, such as displaying geological information in an explicit, and therefore more understandable, way, and simplifying harmonisation efforts in large-scale geological structures crossing national borders. The link between spatial and semantic data is the essential step adding conceptual definitions and interpretations to geometries. Additionally, geomanifestation data successfully validates or points to inconsistencies in specific areas of the model, which can then be further investigated.</p><p>The model demonstrates it is possible to gather existing geological data into a comprehensive knowledge system. We consider this as the way forward towards pan-European integration and harmonisation of geological information. Moreover, we identify the great potential of the structural framework model as a toolbox to communicate geosciences beyond our specialised community. This is an important step to support subsurface spatial planning towards a clean energy transition by making geological information available to all stakeholders involved.</p><p>This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166.</p>


Author(s):  
María N. Moreno ◽  
Saddys Segrera ◽  
Vivian F. López ◽  
María Dolores Muñoz ◽  
Ángel Luis Sánchez

Sign in / Sign up

Export Citation Format

Share Document