Direct Solving Method of Fully Fuzzy Linear Programming Problems with Equality Constraints Having Positive Fuzzy Numbers

Author(s):  
C. Muralidaran ◽  
B. Venkateswarlu
2021 ◽  
Vol 2021 ◽  
pp. 1-36
Author(s):  
Muhammad Athar Mehmood ◽  
Muhammad Akram ◽  
Majed G. Alharbi ◽  
Shahida Bashir

In this study, we present a technique to solve LR -type fully bipolar fuzzy linear programming problems (FBFLPPs) with equality constraints. We define LR -type bipolar fuzzy numbers and their arithmetic operations. We discuss multiplication of LR -type bipolar fuzzy numbers. Furthermore, we develop a method to solve LR -type FBFLPPs with equality constraints involving LR -type bipolar fuzzy numbers as parameters and variables. Moreover, we define ranking for LR -type bipolar fuzzy numbers which transform the LR -type FBFLPP into a crisp linear programming problem. Finally, we consider numerical examples to illustrate the proposed method.


2021 ◽  
pp. 1-18
Author(s):  
Muhammad Akram ◽  
Inayat Ullah ◽  
Tofigh Allahviranloo ◽  
S.A. Edalatpanah

A Pythagorean fuzzy set is a powerful model for depicting fuzziness and uncertainty. This model is more flexible and practical as compared to an intuitionistic fuzzy model. This research article presents a new model called LR-type fully Pythagorean fuzzy linear programming problem. We consider the notions of LR-type Pythagorean fuzzy number, ranking for LR-type Pythagorean fuzzy numbers and arithmetic operations for unrestricted LR-type Pythagorean fuzzy numbers. We propose a method to solve LR-type fully Pythagorean fuzzy linear programming problems with equality constraints. We describe our proposed method with numerical examples including diet problem.


2021 ◽  
Vol 10 (12) ◽  
pp. 3699-3723
Author(s):  
L. Kané ◽  
M. Konaté ◽  
L. Diabaté ◽  
M. Diakité ◽  
H. Bado

The present paper aims to propose an alternative solution approach in obtaining the fuzzy optimal solution to a fuzzy linear programming problem with variables given as fuzzy numbers with minimum uncertainty. In this paper, the fuzzy linear programming problems with variables given as fuzzy numbers is transformed into equivalent interval linear programming problems with variables given as interval numbers. The solutions to these interval linear programming problems with variables given as interval numbers are then obtained with the help of linear programming technique. A set of six random numerical examples has been solved using the proposed approach.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 569
Author(s):  
Wu

The numerical method for solving the fuzzy linear programming problems with fuzzydecision variables is proposed in this paper. The difficulty for solving this kind of problem is thatthe decision variables are assumed to be nonnegative fuzzy numbers instead of nonnegative realnumbers. In other words, the decision variables are assumed to be membership functions. One of thepurposes of this paper is to derive the analytic formula of error estimation regarding the approximateoptimal solution. On the other hand, the existence of optimal solutions is also studied in this paper.Finally we present two numerical examples to demonstrate the usefulness of the numerical method.


Sign in / Sign up

Export Citation Format

Share Document