Vulnerability and Adaptation Strategies of Coastal Communities to the Associated Impacts of Sea Level Rise and Coastal Flooding

Author(s):  
Makame O. Makame ◽  
Haji Mwevura
Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1142
Author(s):  
Juliano Calil ◽  
Geraldine Fauville ◽  
Anna Carolina Muller Queiroz ◽  
Kelly L. Leo ◽  
Alyssa G. Newton Mann ◽  
...  

As coastal communities around the globe contend with the impacts of climate change including coastal hazards such as sea level rise and more frequent coastal storms, educating stakeholders and the general public has become essential in order to adapt to and mitigate these risks. Communicating SLR and other coastal risks is not a simple task. First, SLR is a phenomenon that is abstract as it is physically distant from many people; second, the rise of the sea is a slow and temporally distant process which makes this issue psychologically distant from our everyday life. Virtual reality (VR) simulations may offer a way to overcome some of these challenges, enabling users to learn key principles related to climate change and coastal risks in an immersive, interactive, and safe learning environment. This article first presents the literature on environmental issues communication and engagement; second, it introduces VR technology evolution and expands the discussion on VR application for environmental literacy. We then provide an account of how three coastal communities have used VR experiences developed by multidisciplinary teams—including residents—to support communication and community outreach focused on SLR and discuss their implications.


2013 ◽  
Vol 19 (5) ◽  
pp. 551-568 ◽  
Author(s):  
Brenda B. Lin ◽  
Yong Bing Khoo ◽  
Matthew Inman ◽  
Chi-Hsiang Wang ◽  
Sorada Tapsuwan ◽  
...  

2020 ◽  
Author(s):  
Mahshid Ghanbari ◽  
Mazdak Arabi

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Alexis K. Mills ◽  
Peter Ruggiero ◽  
John P. Bolte ◽  
Katherine A. Serafin ◽  
Eva Lipiec

Coastal communities face heightened risk to coastal flooding and erosion hazards due to sea-level rise, changing storminess patterns, and evolving human development pressures. Incorporating uncertainty associated with both climate change and the range of possible adaptation measures is essential for projecting the evolving exposure to coastal flooding and erosion, as well as associated community vulnerability through time. A spatially explicit agent-based modeling platform, that provides a scenario-based framework for examining interactions between human and natural systems across a landscape, was used in Tillamook County, OR (USA) to explore strategies that may reduce exposure to coastal hazards within the context of climate change. Probabilistic simulations of extreme water levels were used to assess the impacts of variable projections of sea-level rise and storminess both as individual climate drivers and under a range of integrated climate change scenarios through the end of the century. Additionally, policy drivers, modeled both as individual management decisions and as policies integrated within adaptation scenarios, captured variability in possible human response to increased hazards risk. The relative contribution of variability and uncertainty from both climate change and policy decisions was quantified using three stakeholder relevant landscape performance metrics related to flooding, erosion, and recreational beach accessibility. In general, policy decisions introduced greater variability and uncertainty to the impacts of coastal hazards than climate change uncertainty. Quantifying uncertainty across a suite of coproduced performance metrics can help determine the relative impact of management decisions on the adaptive capacity of communities under future climate scenarios.


Author(s):  
Michele Kekeh ◽  
Muge Akpinar-Elci ◽  
Michael J. Allen

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0118571 ◽  
Author(s):  
Barbara Neumann ◽  
Athanasios T. Vafeidis ◽  
Juliane Zimmermann ◽  
Robert J. Nicholls

2019 ◽  
Vol 653 ◽  
pp. 1522-1531 ◽  
Author(s):  
Rafael J. Bergillos ◽  
Cristobal Rodriguez-Delgado ◽  
Gregorio Iglesias

Sign in / Sign up

Export Citation Format

Share Document