scholarly journals Nonparametric Item Response Theory and Mokken Scale Analysis, with Relations to Latent Class Models and Cognitive Diagnostic Models

Author(s):  
L. Andries van der Ark ◽  
Gina Rossi ◽  
Klaas Sijtsma
2021 ◽  
Vol 8 (3) ◽  
pp. 672-695
Author(s):  
Thomas DeVaney

This article presents a discussion and illustration of Mokken scale analysis (MSA), a nonparametric form of item response theory (IRT), in relation to common IRT models such as Rasch and Guttman scaling. The procedure can be used for dichotomous and ordinal polytomous data commonly used with questionnaires. The assumptions of MSA are discussed as well as characteristics that differentiate a Mokken scale from a Guttman scale. MSA is illustrated using the mokken package with R Studio and a data set that included over 3,340 responses to a modified version of the Statistical Anxiety Rating Scale. Issues addressed in the illustration include monotonicity, scalability, and invariant ordering. The R script for the illustration is included.


2021 ◽  
pp. 43-48
Author(s):  
Rosa Fabbricatore ◽  
Francesco Palumbo

Evaluating learners' competencies is a crucial concern in education, and home and classroom structured tests represent an effective assessment tool. Structured tests consist of sets of items that can refer to several abilities or more than one topic. Several statistical approaches allow evaluating students considering the items in a multidimensional way, accounting for their structure. According to the evaluation's ending aim, the assessment process assigns a final grade to each student or clusters students in homogeneous groups according to their level of mastery and ability. The latter represents a helpful tool for developing tailored recommendations and remediations for each group. At this aim, latent class models represent a reference. In the item response theory (IRT) paradigm, the multidimensional latent class IRT models, releasing both the traditional constraints of unidimensionality and continuous nature of the latent trait, allow to detect sub-populations of homogeneous students according to their proficiency level also accounting for the multidimensional nature of their ability. Moreover, the semi-parametric formulation leads to several advantages in practice: It avoids normality assumptions that may not hold and reduces the computation demanding. This study compares the results of the multidimensional latent class IRT models with those obtained by a two-step procedure, which consists of firstly modeling a multidimensional IRT model to estimate students' ability and then applying a clustering algorithm to classify students accordingly. Regarding the latter, parametric and non-parametric approaches were considered. Data refer to the admission test for the degree course in psychology exploited in 2014 at the University of Naples Federico II. Students involved were N=944, and their ability dimensions were defined according to the domains assessed by the entrance exam, namely Humanities, Reading and Comprehension, Mathematics, Science, and English. In particular, a multidimensional two-parameter logistic IRT model for dichotomously-scored items was considered for students' ability estimation.


2003 ◽  
Vol 11 (2) ◽  
pp. 139-163 ◽  
Author(s):  
Wijbrandt H. van Schuur

This article introduces a model of ordinal unidimensional measurement known as Mokken scale analysis. Mokken scaling is based on principles of Item Response Theory (IRT) that originated in the Guttman scale. I compare the Mokken model with both Classical Test Theory (reliability or factor analysis) and parametric IRT models (especially with the one-parameter logistic model known as the Rasch model). Two nonparametric probabilistic versions of the Mokken model are described: the model of Monotone Homogeneity and the model of Double Monotonicity. I give procedures for dealing with both dichotomous and polytomous data, along with two scale analyses of data from the World Values Study that demonstrate the usefulness of the Mokken model.


Sign in / Sign up

Export Citation Format

Share Document