3D Texture Feature Learning for Noninvasive Estimation of Gliomas Pathological Subtype

Author(s):  
Guoqing Wu ◽  
Yuanyuan Wang ◽  
Jinhua Yu
2020 ◽  
Vol 10 (9) ◽  
pp. 2027-2031
Author(s):  
Xu Yifang

Hyperspectral image classification refers to a key difficulty on the domain of remote sensing image processing. Feature learning is the basis of hyperspectral image classification problems. In addition, how to jointly use the space spectrum information is Also an important issue in hyperspectral image classification. Recent ages have seen that as further exploration is developing, the method of hyperspectral image cauterization according to deep learning has been rapidly developed. However, existing deep networks often only consider reconstruction performance while ignoring the task itself. In addition, for improving preciseness of classification, most categorization methods use the fixed-size neighborhood of per hyperspectral pixel as the object of feature extraction, ignoring the identification and difference between the neighborhood pixel and the current pixel. On the basis of exploration above, our research group put forward with an image classification algorithm based on principal component texture feature deep learning, and achieved good results.


Author(s):  
Hero Yudo Martono

In this paper, we present a new feature descriptors  which exploit voxels for 3D textured retrieval system when models vary either by geometric shape or texture or both. First, we perform pose normalisation to modify arbitrary 3D models  in order to have same orientation. We then map the structure of 3D models into voxels. This purposes to make all the 3D models have the same dimensions. Through this voxels, we can capture information from a number of ways.  First, we build biner voxel histogram and color voxel histogram.  Second, we compute distance from centre voxel into other voxels and generate histogram. Then we also compute fourier transform in spectral space.  For capturing texture feature, we apply voxel tetra pattern. Finally, we merge all features by linear combination. For experiment, we use standard evaluation measures such as Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), Average Dynamic Recall (ADR). Dataset in SHREC 2014  and its evaluation program is used to verify the proposed method. Experiment result show that the proposed method  is more accurate when compared with some methods of state-of-the-art.


Sign in / Sign up

Export Citation Format

Share Document