Combining Exact Methods to Construct Effective Hybrid Approaches to Vehicle Routing

Author(s):  
Rym M’Hallah
2019 ◽  
Vol 8 (2) ◽  
pp. 117-118
Author(s):  
Michael Schneider ◽  
Timo Gschwind ◽  
Daniele Vigo

Author(s):  
Abir Derouiche ◽  
Abdesslem Layeb ◽  
Zineb Habbas

Association rule mining (ARM), one of the most known tasks in data mining, is considered as an optimization problem. The ARM problem can be solved either by exact methods or by metaheuristics. Exact methods such as Apriori algorithm are very efficient to deal with small and medium datasets. However, when dealing with large size datasets, these methods suffer from time complexity. Metaheuristics are proven faster but most of them suffer from accuracy. To deal with these two challenging issues, this work investigates to enhance metaheuristics and proposes hybrid approaches, which combine metaheuristics and the Apriori principle to intelligently explore the association rules space. To validate the proposed approaches the chemical reaction optimization metaheuristic (CRO) was used. Intensive experiments have been carried out and the first results are very promising in terms of accuracy and processing time.


Author(s):  
Jorge Rodas ◽  
Daniel Azpeitia ◽  
Alberto Ochoa-Zezzatti ◽  
Raymundo Camarena ◽  
Tania Olivier

The aim of this chapter is about the inclusion of real world scenarios, viewed as a Generalized Vehicle Routing Problem (GVRP) model problem, and treated by bio inspired algorithms in order to find optimum routing of product delivery. GVRP is the generalization of the classical Vehicle Routing Problem (VRP) that is well known NP-hard as generalized combinatorial optimization problem with a number of real world applications and a variety of different versions. Due to its complexity, large instances of VRP are hard to solve using exact methods. Thus a solution by a soft computing technique is desired. From a methodological standpoint, the chapter includes four bio inspired algorithms, ant colony optimization and firefly. From an application standpoint, several factors of the generalized vehicle routing are considered from a real world scenario.


2019 ◽  
Vol 1 (1) ◽  
pp. 15
Author(s):  
Syafruddin Side ◽  
Maya Sari Wahyuni ◽  
Hadrianty Ramli

Abstrak. Warshall merupakan algoritma untuk menghitung jarak terpendek untuk semua pasangan titik pada sebuah lokasi yang dapat diubah menjadi sebuah graf berarah dan berbobot, yang berupa titik-titik (V) dan sisi-sisi (E) serta paling memiliki minimal satu sisi pada setiap titik. Vehicle Routing Problem (VRP) termasuk dalam kelas NP-hard problem dalam combinatorial optimization, sehingga sulit diselesaikan dengan metode eksak yang berlaku secara umum. Penelitian ini diawal dengan konsep matematis Penerapan Algoritma Warshall, yaitu pengambilan data Pendistribusian dari Perusahaan, pencarian bobot lintasan, mengubah kedalam matriks dengan ukuran  dalam hal ini matriks yang digunakan berukuran , menerapkan Algoritma Warshall dalam matriks yang diperoleh. Persamaan yang digunakan adalah pertama Representasi graf ke matriks berbobot berjarak D = [dij] yaitu jarak dari vertex i ke j; Kedua Dekomposisi dengan urutan dij(k). D(k) menjadi matriks nxn [dij(k)] batasi k sampai n sehingga k = 0, 1, …, n; Ketiga Pengamatan struktur shortest path dilakukan dengan dua cara yaitu jika k bukan merupakan vertex pada path (path terpendek memiliki panjang dij(k-1)) dan k merupakan vertex pada path (path terpendek memiliki panjang dij(k-1)+dij(k-1)), hal tersebut memuat sebuah subpath dari i ke k dan sebuah subpath dari k ke j. Keempat Iterasi yang dimulai dari 0 sampai dengan n. Berdasarkan hasil penelitian diperoleh bahwa dengan Metode Algoritma Warshall dapat menyelesaikan permasalahan penentuan rute terpendek dalam pendistribusian PT Semen Bosowa dengan menghitung jarak seluruh jalur lintasan yang ada dalam pendistribusian semen Bosowa di Makassar.Kata Kunci : Algoritma Warshall, Masalah Vehicle Routing, Graf Berarah, Graf Berbobot, Jalur Terpendek.Abstract  Warshall is an algorithm to calculate the shortest distance for every pair of points in a location that can be converted into a directed and weighted graph, in the form of vertex (V) and edges (E), and most have at least one side at any vertex. Vehicle Routing Problem (VRP) is included in the class of NP-hard problem in combinatorial optimization, making it difficult to solve with exact methods applicable in general. This study beginning with mathematical concepts Implementation of Algorithms Warshall, which is taking the data distribution from the Company, the search for weight trajectory, changing into a matrix with n × n squares in this case matrix used measuring 11 x 11, apply the algorithm Warshall in the matrix obtained, the second is the implementation of Algorithms Warshall using Microsoft Visual Basic programming language. The equation used is the first representation of the graph to a weighted matrix D = [dij] ie the distance from the vertex i to j; The second order decomposition with dij (k). D (k) be the nxn matrix [dij (k)] so that the limit k to n for k = 0, 1, ..., n; Third observation structures shortest path done in two ways: if k is not a vertex on the path (the shortest path length dij (k-1)) and k is the vertex on the path (the shortest path length dij (k-1) + dij (k -1)), it contains a subpath from i to k and a subpath from k to j. The fourth iteration numbered 0 through n. The result showed that the method Warshall algorithm can solve the problems of determining the shortest route in the distribution of PT Semen Bosowa by calculating the distance of the entire passage is in the distribution of cement Bosowa in Makassar.Keywords: Algorithm Warshall, Vehicle Routing Problem, trending Graf, Graf Weighted, Shortest Path.


2015 ◽  
Vol 4 (3) ◽  
pp. 430
Author(s):  
Joseph Okitonyumbe Y. F ◽  
Berthold Ulungu E.-L ◽  
Joel Kapiamba Nt.

<p>Solving a classical vehicle routing problem (VRP) by exact methods presents many difficulties for large dimension problem. Consequently, in multi-objective framework, heuristic or metaheuristic methods are required. Due to particular VRP structure, it seems that a dedicated heuristicis more suitable than a metaheuristic. The aim of this article is to collapse different heuristics solving classical VRP and adapt them for to solve the multi-objective vehicle routing problem (MOVRP). The so-called Cobweb Algorithm simulates spider’s behavior when weaving cobweb. This paper presents the algorithm, a didactic example, concluding remarks and way for further researches.</p>


Sign in / Sign up

Export Citation Format

Share Document