scholarly journals Advances in vehicle routing and logistics optimization: exact methods

2019 ◽  
Vol 8 (2) ◽  
pp. 117-118
Author(s):  
Michael Schneider ◽  
Timo Gschwind ◽  
Daniele Vigo
Author(s):  
Jorge Rodas ◽  
Daniel Azpeitia ◽  
Alberto Ochoa-Zezzatti ◽  
Raymundo Camarena ◽  
Tania Olivier

The aim of this chapter is about the inclusion of real world scenarios, viewed as a Generalized Vehicle Routing Problem (GVRP) model problem, and treated by bio inspired algorithms in order to find optimum routing of product delivery. GVRP is the generalization of the classical Vehicle Routing Problem (VRP) that is well known NP-hard as generalized combinatorial optimization problem with a number of real world applications and a variety of different versions. Due to its complexity, large instances of VRP are hard to solve using exact methods. Thus a solution by a soft computing technique is desired. From a methodological standpoint, the chapter includes four bio inspired algorithms, ant colony optimization and firefly. From an application standpoint, several factors of the generalized vehicle routing are considered from a real world scenario.


2018 ◽  
Vol 7 (2) ◽  
pp. 89-91
Author(s):  
Christelle Guéret ◽  
Fabien Lehuédé ◽  
Jorge E. Mendoza ◽  
Olivier Péton ◽  
Marc Sevaux

2019 ◽  
Vol 1 (1) ◽  
pp. 15
Author(s):  
Syafruddin Side ◽  
Maya Sari Wahyuni ◽  
Hadrianty Ramli

Abstrak. Warshall merupakan algoritma untuk menghitung jarak terpendek untuk semua pasangan titik pada sebuah lokasi yang dapat diubah menjadi sebuah graf berarah dan berbobot, yang berupa titik-titik (V) dan sisi-sisi (E) serta paling memiliki minimal satu sisi pada setiap titik. Vehicle Routing Problem (VRP) termasuk dalam kelas NP-hard problem dalam combinatorial optimization, sehingga sulit diselesaikan dengan metode eksak yang berlaku secara umum. Penelitian ini diawal dengan konsep matematis Penerapan Algoritma Warshall, yaitu pengambilan data Pendistribusian dari Perusahaan, pencarian bobot lintasan, mengubah kedalam matriks dengan ukuran  dalam hal ini matriks yang digunakan berukuran , menerapkan Algoritma Warshall dalam matriks yang diperoleh. Persamaan yang digunakan adalah pertama Representasi graf ke matriks berbobot berjarak D = [dij] yaitu jarak dari vertex i ke j; Kedua Dekomposisi dengan urutan dij(k). D(k) menjadi matriks nxn [dij(k)] batasi k sampai n sehingga k = 0, 1, …, n; Ketiga Pengamatan struktur shortest path dilakukan dengan dua cara yaitu jika k bukan merupakan vertex pada path (path terpendek memiliki panjang dij(k-1)) dan k merupakan vertex pada path (path terpendek memiliki panjang dij(k-1)+dij(k-1)), hal tersebut memuat sebuah subpath dari i ke k dan sebuah subpath dari k ke j. Keempat Iterasi yang dimulai dari 0 sampai dengan n. Berdasarkan hasil penelitian diperoleh bahwa dengan Metode Algoritma Warshall dapat menyelesaikan permasalahan penentuan rute terpendek dalam pendistribusian PT Semen Bosowa dengan menghitung jarak seluruh jalur lintasan yang ada dalam pendistribusian semen Bosowa di Makassar.Kata Kunci : Algoritma Warshall, Masalah Vehicle Routing, Graf Berarah, Graf Berbobot, Jalur Terpendek.Abstract  Warshall is an algorithm to calculate the shortest distance for every pair of points in a location that can be converted into a directed and weighted graph, in the form of vertex (V) and edges (E), and most have at least one side at any vertex. Vehicle Routing Problem (VRP) is included in the class of NP-hard problem in combinatorial optimization, making it difficult to solve with exact methods applicable in general. This study beginning with mathematical concepts Implementation of Algorithms Warshall, which is taking the data distribution from the Company, the search for weight trajectory, changing into a matrix with n × n squares in this case matrix used measuring 11 x 11, apply the algorithm Warshall in the matrix obtained, the second is the implementation of Algorithms Warshall using Microsoft Visual Basic programming language. The equation used is the first representation of the graph to a weighted matrix D = [dij] ie the distance from the vertex i to j; The second order decomposition with dij (k). D (k) be the nxn matrix [dij (k)] so that the limit k to n for k = 0, 1, ..., n; Third observation structures shortest path done in two ways: if k is not a vertex on the path (the shortest path length dij (k-1)) and k is the vertex on the path (the shortest path length dij (k-1) + dij (k -1)), it contains a subpath from i to k and a subpath from k to j. The fourth iteration numbered 0 through n. The result showed that the method Warshall algorithm can solve the problems of determining the shortest route in the distribution of PT Semen Bosowa by calculating the distance of the entire passage is in the distribution of cement Bosowa in Makassar.Keywords: Algorithm Warshall, Vehicle Routing Problem, trending Graf, Graf Weighted, Shortest Path.


2015 ◽  
Vol 4 (3) ◽  
pp. 430
Author(s):  
Joseph Okitonyumbe Y. F ◽  
Berthold Ulungu E.-L ◽  
Joel Kapiamba Nt.

<p>Solving a classical vehicle routing problem (VRP) by exact methods presents many difficulties for large dimension problem. Consequently, in multi-objective framework, heuristic or metaheuristic methods are required. Due to particular VRP structure, it seems that a dedicated heuristicis more suitable than a metaheuristic. The aim of this article is to collapse different heuristics solving classical VRP and adapt them for to solve the multi-objective vehicle routing problem (MOVRP). The so-called Cobweb Algorithm simulates spider’s behavior when weaving cobweb. This paper presents the algorithm, a didactic example, concluding remarks and way for further researches.</p>


This chapter proposes a position viewpoint, discussion, and analysis of various aspects of solving 2E-CVRP problems via exact methods, more precisely the use of set partitioning formulations (and consequently set covering ones), as well as column generation to produce bounds and feed branch-and-prize approaches. After an overview of the main exact methods used to solve 2E-CVRP approaches, the author defines the main notions and variables to model the problem via set covering and set partitioning models. Then the paper presents two methods to generate bounds via column generation: the first is a decomposition approach in which first-echelon and second-echelon routes are generated separately, without any relation, and the second generate sets of linked first-echelon and second-echelon routes. The main implications and considerations of those methods are addressed. Finally, main issues regarding the suitability of exact methods for vehicle routing in city logistics are presented.


2016 ◽  
Vol 8 (1) ◽  
pp. 35
Author(s):  
Mamoon Alameen ◽  
Rasha Aljamal ◽  
Sadeq Damrah

Vehicle Routing Problem (VRP) and Traveling Salesman Problem (TSP) are well known transportation problems. The problems can be seen in all the industries that involves goods distribution and transportation scheduling. Finding the shortest distance with respect to the given constraint contribute highly to save money and energy consumption. This paper investigates the possibility of creating a cellular application that can provide an instant routing plan through a simple heuristic (Clarke and Wright) in order to avoid the usage of more complicated approaches as metaheuristics and exact methods that normally taking very long CPU time.


Sign in / Sign up

Export Citation Format

Share Document