Journal of Mathematics, Computations, and Statistics
Latest Publications


TOTAL DOCUMENTS

65
(FIVE YEARS 65)

H-INDEX

0
(FIVE YEARS 0)

Published By Fakultas MIPA Universitas Negeri Makassar

2476-9487

Author(s):  
Hisyam Ihsan ◽  
Syafruddin Side ◽  
Muhammad Iqbal

Penelitian ini mengkaji tentang solusi persamaan Burgers Inviscid dengan metode pemisahan variabel. Tujuan dari penelitian ini adalah untuk mengetahui penyederhanaan sistem persamaan Navier-Stokes menjadi persamaan Burgers Inviscid, menemukan solusi persamaan Burgers Inviscid dengan metode pemisahan variabel, dan melakukan simulasi solusi persamaan dengan menggunakan software Maple18. Persamaan Burgers muncul sebagai penyederhanaan model yang rumit dari sistem persamaan Navier-Stokes. Persamaan Burgers adalah persamaan diferensial parsial hukum konservasi dan merupakan masalah hiperbolik, yaitu representasi nonlinier paling sederhana dari persamaan Navier-Stokes. Metode pemisahan variabel merupakan salah satu metode klasik yang efektif digunakan dalam menyelesaikan persamaan diferensial parsial dengan mengasumsikan  untuk mendapatkan komponen x dan t. Kemudian akan dilakukan subtitusi pada persamaan diferensial, sehingga dengan cara ini akan didapatkan solusi persamaan diferensial parsial.Kata Kunci: Persamaan Burgers Inviscid, metode pemisahan variabel, persamaan Navier-StokesThis study examines the solution of Burgers Inviscid equation with variable separation method. The purpose of this study was to find out the simplification of the Navier-Stokes equation system into the Burgers Inviscid equation, find a solution to the Burgers Inviscid equation with the variable separation method, and simulate equation solutions using Maple18 software. The Burgers equation emerged as a complicated simplification of the Navier-Stokes equation system. The Burgers equation is a partial differential equation of conservation law and is a hyperbolic problem, i.e. the simplest nonlinear representation of the Navier-Stokes equation. The variable separation method is one of the classic methods that is effectively used in solving partial differential equations assuming  to obtain the x and t components. Then there will be substitutions to differential equations, so that in this way there will be a partial differential equation solution.Keywords: Burgers Inviscid Equation, variable separation method, Navier-Stokes equations.


Author(s):  
Maya Sari Wahyuni ◽  
S. Sukarna ◽  
Muh. Irham Rosadi

. Pantai merupakan kawasan yang sering dimanfaatkan untuk berbagai kegiatan manusia, namun seringkali upaya pemanfaatan tersebut menyebabkan permasalahan pantai sehingga garis pantai berubah. Salah satu cara yang dapat digunakan untuk mengetahui perubahan garis pantai yaitu dengan membuat model matematika. Model perubahan garis pantai berbentuk persamaan diferensial parsial dapat diselesaikan secara analitik dengan menggunakan metode transformasi Elazki. Metode transformasi Elzaki merupakan salah satu bentuk transformasi integral yang diperoleh dari integral Fourier sehingga didapatkan transformasi Elzaki dan sifat-sifat dasarnya. Perubahan garis pantai pada penelitian ini dipengaruhi oleh adanya groin. Penyelesaian model perubahan garis pantai dengan metode transformasi Elzaki dilakukan dengan menerapkan transformasi Elzaki pada model perubahan garis pantai untuk memperoleh model perubahan garis pantai yang baru, kemudian menerapkan syarat batas, kemudian menerapkan invers transformasi Elzaki sehingga diperoleh solusi model perubahan garis pantai. Berdasarkan hasil penelitian, diperoleh bahwa terdapat kesamaan antara pola grafik yang dihasilkan dari solusi model perubahan garis pantai dengan metode transformasi Elzaki dan solusi model perubahan garis pantai dengan metode numerik.Kata Kunci: Perubahan garis pantai, Groin, Analitik, Transformasi Elzaki.The beach is a region that is often used for various human activities, however often these utilization efforts cause beach problems so that the shoreline changes. One way that can be used to determine changes in shoreline is to make a mathematical model. The shoreline change model shaped of partial differential equation can be solved analytically by using the Elzaki transform method. The Elzaki transform method is a form of integral transform obtained from the Fourier integral so that the Elzaki transform and its basic properties are obtained. Shoreline change in this research were affected by groyne. Solution of shoreline change model using Elzaki transform method is carried by applying the Elzaki transform to the shoreline change model to obtain a new shoreline change model, then applying the boundary value, then applying the inverse of Elzaki transform so obtained a solution shoreline change model. Based on the research result, it was found that there was a similiarity between the graphic patterns generated from the solution of shoreline change model using Elzaki transform method and the solution of shoreline change model using numerical method.Keywords: Shoreline change, Groyne, Analitic, Elzaki transform


Author(s):  
Muhammad Abdy ◽  
Rahmat Syam ◽  
T. Tina

Penelitian ini bertujuan mengkonstruksi graf dual dari graf roda (Wn*) dan menentukan bilangan kromatik graf dual dari graf roda (Wn*). Penelitian ini dimulai dari menggambarkan beberapa graf roda  dari  ke , kemudian membangun graf dual dari graf roda  dengan memanfaatkan graf-graf dari  ke , kemudian memberikan warna pada titik-titik dari graf dualnya dengan menentukan bilangan kromatiknya. Diperoleh hasil bahwa Graf roda  merupakan graf self-dual karena isomorfik dengan graf dualnya yaitu . Pewarnaan titik diperoleh dengan menentukan bilangan kromatik graf dual dari graf roda, menentukan pola dari bilangan kromatik, dan memberikan warna. Berdasarkan hasil penelitian, diperoleh bilangan kromatik pewarnaan titik pada graf dual dari graf roda yakni Kata Kunci: Pewarnaan Titik, Bilangan Kromatik, Graf Dual dan Graf Roda.This research aims to construct a dual graph from a wheel graph (Wn*) and determine the dual graph chromatic number of the wheel graph (Wn*). This research starts from describing some wheel graph   from  to , then construct a dual graph from a wheel graph   from  to , then gives color to the vertices of the dual graph by determining the chromatic number. The result showed that the wheel graph  is a self-dual graph because it is isomorphic with its dual graph, namely . The vertex coloring is obtained by determining the chromatic number of the dual graph of the wheel graph, determining the pattern of the chromatic number and giving the color. Based on the research results, the chromatic number of vertex coloring on dual graph of a wheel graph is:    Keywords: Vertex Coloring, Chromatic Number, Dual Graph and Wheel Graph.


Author(s):  
Syafruddin Side ◽  
Ahmad Zaki ◽  
S. Sartika

Penelitian ini bertujuan untuk membangun model penyebaran penyakit Tifus tipe SIRI (Susceptible-Infected-Recovered-Infected), dengan menambahkan asumsi bahwa manusia yang sembuh dapat kembali terinfeksi penyakit Tifus. Model ini di bagi menjadi 3 kelas yaitu rentan, terinfeksi dan sembuh. Adapun prosedur penelitian dilakukan melalui tahapan-tahapan: membangun model penyebaran penyakit Tifus tipe SIRI, Menguji Kestabilan titik kesetimbangan dan menentukan bilangan reproduksi dasar , kemudian menerapkannya pada kasus Penyakit Tifus di Provinsi Sulawesi Selatan. Data yang digunakan dalam membangun model adalah jumlah penderita penyakit Tifus tahun 2018 dari Dinas Kesehatan Provinsi Sulawesi Selatan. Model matematika tipe SIRI digunakan untuk menentukan titik equilibrium. Berdasarkan hasil simulasi model SIRI diperoleh bilangan reproduksi dasar (  sebesar 0,000903 yang menandakan bahwa penyebaran penyakit Tifus di Provinsi Sulawesi Selatan pada tahun 2018 bukan kejadian luar biasa atau dapat dikatakan bahwa seseorang yang terinfeksi penyakit Tifus ini tidak menyebabkan orang lain terkenapenyakit yang sama, dengan kata lain tidak terjadi wabah pada populasi tersebut.Kata kunci: Titik Equilibrium, Bilangan Reproduksi Dasar, Tifus, Model SIRI. The research aims to build a SIRI model of the Typhoid spread (Susceptible-Infected-Recovered-Infected) by adding assumption that people who are recovered might be infected again. This model is divided into three classes, namely, susceptible, infected and recovered. the research procedure is carried out through several stages: Building SIRI model for the spread of Typhoid, examining the stability of the equilibrium point and determining the basic reproduction number, and applying the model to Typhoid cases in South Sulawesi. The data is the number of Typhus patients in 2018 that was obtained from Health office of South Sulawesi Province. SIRI type mathematical models are used to determine the equilibrium point. Based on the simulation results of the SIRI model, the basic reproduction number is 0,000903 indicate that, indicating that the spread of Typhus in the Province of South Sulawesi in 2018 was not an extraordinary event or it can be said that someone who is infected with this Typhoid does not cause another person to contract the same disease, in other words there was no outbreak in that population.Keywords: equilibrium Point, Basic Reproductive Number, Typhoid, SIRI Model.


Author(s):  
Syafruddin Side ◽  
Ahmad Zaki ◽  
Norliana Rahmasari

Penelitian ini bertujuan untuk membangun  model matematika SEIR pada kanker kulit akibat paparan sinar ultraviolet dengan asumsi bahwa terdapat masa inkubasi pada kanker kulit. Model ini dibagi menjadi 4 kelas yaitu susceptible, exposed, infected dan recovered. Adapun prosedur penelitian dilakukan melalui tahapan-tahapan: membuat model SEIR pada kanker kulit di provinsi Sulawesi Selatan, menentukan titik ekuilibrium model, analisis kestabilan titik ekuilibrium, menentukan bilangan reproduksi dasar ( ). Data yang digunakan dalam membangun model adalah penderita kanker kulit tahun 2018 hingga tahun 2019 dari Rumah Sakit Wahidin Sudirohusodo kota Makassar. Hasil yang diperoleh bahwa semakin besar persentase laju kesembuhan tiap individu yang terinfeksi karena adanya pengobatan mengakibatkan populasi pada kelas recovered semakin meningkat dan populasi pada kelas infected mengalami penurunan. Dengan kata lain penyakit kanker kulit tidak mewabah di Provinsi Sulawesi Selatan.Kata Kunci: Titik Equilibrium, Bilangan Reproduksi Dasar, Kanker Kulit, Model SEIRThis study aims to build a mathematical model of SEIR in skin cancer due to ultraviolet light exposure assuming that there is an incubation period in skin cancer. This model is divided into 4 classes namely susceptible, exposed, infected and recovered. The research procedure is carried out through the stages: make a SEIR model on skin cancer in the province of South Sulawesi, determine the equilibrium point of the model, analyze the stability of the equilibrium point, determine the base reproduction number ( ). The data used in building the model were skin cancer sufferers from 2018 to 2019 from Sudirohusodo Wahidin Hospital in Makassar. The results obtained that the greater the percentage of recovery rate of each infected individual due to treatment causes the population of the recovered class to increase and the population of the infected class to decrease. In other words skin cancer is not endemic in South Sulawesi Province.Keywords: Equilibrium Point, Basic Reproductive Numbers, Skin Cancer, SEIR Model


2021 ◽  
Vol 4 (2) ◽  
pp. 102
Author(s):  
Rahmat Syam ◽  
Hisyam Ihsan ◽  
Muhammad Irham Muktamar

Penelitian ini membahas tentang optimasi pendistribusian menggunakan model transportasi yang menerapkan Metode North West Corner (NWC) dan Metode Modified Distribution (MODI) pada pendistribusian air di PDAM Wae Manurung kabupaten Bone. Data distribusi air diformulasikan dengan model transportasi, sehiggga diperoleh keseimbangan model dengan penambahan variabel dummy dan tabel transportasi distribusi air, diperoleh solusi awal yang fisibel dengan perhitungan menggunakan Metode North West Corner. Berdasarkan solusi awal diperoleh solusi optimum dengan menggunakan Metode Modified Distribution. Hasil penelitian ini menunjukkan bahwa dengan penerapan Model Transportasi terjadi optimasi biaya distribusi air di Kabupaten Bone sebesar 52,22% dibandingkan hasil perhitungan yang dilakukan oleh PDAM Wae Manurung Kabupaten Bone.Kata Kunci: Optimasi, model transportasi, north west corner, modified distribution, distribusi air This study discusses the Optimization using types of transportation model that application North West Corner method (NWC) and Modified Distribution Method (MODI) on the stock of water in PDAM Wae Manurung Bone Regency. The water distribution data is formulated with a transportation model, so that in order to obtain the model is generated a balance model with addition dummy variable and export table water distribution, obtained a feasible initial solution by calculation using North West Corner method (NWC). Based on a feasible initial solution obtained the optimum solution using the Modified Distribution Method (MODI). The results of this study indicate that with the application of the Transportation Model there was a optimization occurs in water distribution costs in Bone Regency in June 2019 of 52.22% compared to the calculation results by PDAM Wae Manurung Bone Regency.Keywords: Optimization transportation model, north west corner, modified distribution, distribution water.


Author(s):  
Syafruddin Side ◽  
Muhammad Abdy ◽  
Annisa Uniarti
Keyword(s):  

Abstrak. Penelitian ini merupakan penelitian kajian pustaka yang bertujuan untuk mengkaji konsep dasar jumlahan langsung eksternal dan jumlahan langsung internal pada ring beserta sifat-sifatnya. Kajian dimulai dari definisi jumlahan langsung eksternal dan jumlahan langsung internal. Adapun literatur utama yang digunakan adalah buku yang ditulis oleh B. Hartley dan T.O. Hawkes (1970). Hasil yang diperoleh menjelaskan dan menguraikan definisi konsep jumlahan langsung eksternal dan jumlahan langsung internal pada ring, teorema-teorema tentang sifat-sifat jumlahan langsung pada ring yang  memuat masing-masing sebuah teorema akibat dari representasi sifat jumlahan langsung pada S-Near Ring dan jumlahan langsung pada modul yang berkaitan dengan jumlahan langsung eksternal dan jumlahan langsung internal pada ring. Kata Kunci: Ring, Jumlahan Langsung Eksternal, Jumlahan Langsung Internal.Abstract. This research is literature study that aims to examine the basic consept of external direct sum of ring, internal direct sum of ring, and properties of direct sum of ring. The study starts from the definitioan of external direct sum and internal direct sum. The main literature used is a book written by B. Hartley and T.O. Hawkes (1970). The result obtained explain and elaborated on the definitons of external direct sum and internal direct sum of ring, theorems about properties of direct sum of ring that accommodate a theorem resulting from the representation of the properties of direct sum of S-Near Ring and direct sum of modules relating to external rirect sum and internal direct sum of ring.Keywords: Ring, External Direct Sum, Internal Direct Sum.


Author(s):  
M. Megasari

Abstrak. Penelitian ini membahas tentang penyelesaian masalah infiltrasi stasioner dari saluran datar dengan Dual Reciprocity Boundary Element Method (DRBEM). Persamaan pembangun untuk masalah ini adalah persamaan Richard. Menggunakan transformasi Kirchhoff dan relasi eksponensial konduktifitas hidrolik, persamaan Richard ditransformasi ke dalam persamaan infiltrasi stasioner dalam Matric Flux Potential (MFP). Persamaan infiltrasi dalam MFP selanjutnya diubah ke dalam persamaan Helmholtz termodifikasi. Model matematika infiltrasi stasioner pada saluran datar berbentuk Masalah Syarat batas Helmholtz termodifikasi Solusi numerik diperoleh dengan menyelesaikan persamaan Helmholtz termodifikasi menggunakan Dual Reciprocity Boundary Element Method (DRBEM) dengan pengambilan jumlah titik kolokasi eksterior dan interior yang bervariasi. Lebih lanjut, solusi numerik dan solusi analitik dibandingkan..Kata Kunci: Infiltrasi, saluran datar, persamaan helmholtz termodifikasi, DRBEM.Abstract. This research discusses about the problem solving of steady infiltration problem from flat channel with Dual Reciprocity Boundary Element Method (DRBEM). The governing equation for this problem is Richard’s equation. Using Kirchhoff transformation and exponential hydraulic conductivity relation, Richard’s equation is transformed into steady infiltration equation in the form of MFP. Infiltration equation in the form of MFP is then transformed to modified Helmholtz equation. A mathematical model of steady infiltration from flat channel in the form of boundary condition problem of modified Helmholtz EQUATION. Numerical solution is obtained by solving modified Helmholtz equation by using Dual Reciprocity Boundary Element Method (DRBEM) with various number of exterior and interior collocation points. Moreover, numerical and analytic solution are then compared.Keywords: infiltration, flat channel, modified Helmholtz equation, DRBEM


Author(s):  
Muh. Isbar Pratama ◽  
Dian Firmayasari ◽  
Nur Ahniyanti Rasyid ◽  
H. Harianto

Abstrak.Model matematika arus lalu lintas pertama kali dikembangkan oleh Lighthill, Whitham dan Richards pada tahun 1956 yang dikenal dengan model (LWR). Dalam model LWR, fungsi kecepatan adalah unsur yang terpenting. Dalam makalah ini digunakan fungsi kecepatan underwood karena memiliki tingkat kesesuaian yang terbaik dibadingkan dengan fungsi kecepatan lainnya. Metode beda hingga implisit digunakan untuk menemukan solusi numerik model LWR dengan model kecepatan Underwood. Konvergensi metode beda hingga implisit dibuktikan dengan menggunakan teorema Ekuivalensi Lax. Simulasi numerik jalan raya satu lajur sepanjang 10 km dilakukan selama 1 jam menggunakan metode beda hingga implisit berdasarkan data awal dan batas yang dibuat secara artifisial. Simulasi numerik dilakukan dengan dua parameter berbeda. Hasil eksperimen menujukkan bahwa semakin tinggi rata-rata kepadatan kendaraan pada suatu laju mengakibatkan rata-rata kecepatan kendaraan akan berkurang. Kata kunci: Metode Beda Hingga Implisit, Model LWR, Arus Lalu Lintas, Fungsi Felositas Underwood, Simulasi Numerik.Kata kunci : Abstract. Mathematical traffic flow model was first developed by Lighthill, Whitham and Richards in 1956, known as (LWR) model. In LWR model, velocity function was most important. In this paper, Underwood velocity function was used. Implicit finite difference method used to found the numerical solution of LWR model with Underwood velocity model. Convergence the implicit finite difference method proved using the Lax equivalence theorem. The numerical simulation of 10 km highway of single lane was performed for 1 hours using the implicit finite difference method based on artificially generated initial and boundary data. Numerical simulation performed with two different parameters. An experimental result for the stability condition of the numerical scheme was also presented. Density, velocity, and fluks for 1 hours was experimental result of numerical simulation.Keywords: Implicit finite difference method, Lax equivalence theorem, LWR model, Traffic flow, Under-wood velocity Function, Numerical simulation.


Author(s):  
Muhammad Abdy ◽  
Hisyam Ihsan ◽  
Dhea Ayu Rossyana Dewi

Abstrak. Penelitian ini membahas tentang solusi persamaan diferensial parsial linier yaitu persamaan Schrodinger. Solusi persamaan ini dilakukan dengan menggunakan metode transformasi diferensial yang merupakan metode semi-numerik-analitik yang dapat digunakan untuk menyelesaikan persamaan diferensial biasa ataupun persamaan diferensial parsial linier dan nonlinier. Metode transformasi diferensial merupakan metode yang menggunakan teori ekspansi deret pangkat pada bentuk transformasinya untuk menentukan solusi. Pada penelitian ini digunakan dua nilai awal pada persamaan Schrodinger yang diberikan. Solusi dengan kedua nilai awal yang diberikan diperoleh dengan menggunakan ekspansi deret Maclaurin. Kemudian solusi tersebut disimulasikan menggunakan software Maple18. Akibatnya, metode transformasi diferensial pada penelitian ini merupakan salah satu metode yang mampu menghasilkan solusi untuk persamaan Schrodinger..Kata Kunci: Persamaan Schrodinger, Metode Transformasi DiferensialAbstract. This study discusses the solution of linear partial differential equations, namely Schrodinger equation. The solution of the equation is done by using the differential transformation method which is a semi-numerical-analytical method, it can be used to solve both ordinary differential equations and linear or nonlinear partial differential equations. Differential transformation method is a method uses the theory of rank expansion in the form of transformation to determine solutions. In this study, two initial values in the given Schrodinger equation were used. Solutions with both initial values given are obtained using the Maclaurin series expansion. Then, the solution is simulated using Maple18 software. As a result, the differential transformation method in this study is one method that is able to solve a solution to the Schrodinger equation.Keywords: Schrodinger Equation, Differential Transformation Method


Sign in / Sign up

Export Citation Format

Share Document