A Computational Modeling Based on Trigonometric Cubic B-Spline Functions for the Approximate Solution of a Second Order Partial Integro-Differential Equation

Author(s):  
Arshed Ali ◽  
Kamil Khan ◽  
Fazal Haq ◽  
Syed Inayat Ali Shah
Author(s):  
Abdul Khaleq O. Al-Jubory ◽  
Shaymaa Hussain Salih

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   


Author(s):  
Samir Lemita ◽  
Sami Touati ◽  
Kheireddine Derbal

This paper’s purpose is to study the nonlinear Fredholm implicit integro-differential equation in the complex plane, where the term implicit integro-differential means that the derivative of unknown function is founded inside of the integral operator. Initially, according to Banach fixed point theory, we ensure that the equation has a unique solution under particular conditions. However, we exhibit a numerical process based on the conjunction between Nyström and Picard methods, for the sake of approximating solutions of this equation. In addition to that, the convergence analysis of this numerical process is demonstrated, and some illustrated numerical examples are presented.


Sign in / Sign up

Export Citation Format

Share Document