Filtering 2D Seismic Data Using the Time Slice Singular Spectral Analysis

Author(s):  
R. K. Tiwari ◽  
R. Rekapalli
1964 ◽  
Vol 54 (4) ◽  
pp. 1213-1232
Author(s):  
I. K. McIvor

Abstract Three different methods of spectral analysis are compared on the basis of a common interpretation in terms of time-varying Fourier analysis. The spectra obtained by these methods for a particular seismic event are given and differences in the results are resolved.


2018 ◽  
Vol 34 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Adriana Kauati ◽  
Wagner Coelho de Albuquerque Pereira ◽  
Marcello Luiz Rodrigues Campos

Geophysics ◽  
2021 ◽  
pp. 1-97
Author(s):  
Dawei Liu ◽  
Lei Gao ◽  
Xiaokai Wang ◽  
wenchao Chen

Acquisition footprint causes serious interference with seismic attribute analysis, which severely hinders accurate reservoir characterization. Therefore, acquisition footprint suppression has become increasingly important in industry and academia. In this work, we assume that the time slice of 3D post-stack migration seismic data mainly comprises two components, i.e., useful signals and acquisition footprint. Useful signals describe the spatial distributions of geological structures with local piecewise smooth morphological features. However, acquisition footprint often behaves as periodic artifacts in the time-slice domain. In particular, the local morphological features of the acquisition footprint in the marine seismic acquisition appear as stripes. As useful signals and acquisition footprint have different morphological features, we can train an adaptive dictionary and divide the atoms of the dictionary into two sub-dictionaries to reconstruct these two components. We propose an adaptive dictionary learning method for acquisition footprint suppression in the time slice of 3D post-stack migration seismic data. To obtain an adaptive dictionary, we use the K-singular value decomposition algorithm to sparsely represent the patches in the time slice of 3D post-stack migration seismic data. Each atom of the trained dictionary represents certain local morphological features of the time slice. According to the difference in the variation level between the horizontal and vertical directions, the atoms of the trained dictionary are divided into two types. One type significantly represents the local morphological features of the acquisition footprint, whereas the other type represents the local morphological features of useful signals. Then, these two components are reconstructed using morphological component analysis based on different types of atoms, respectively. Synthetic and field data examples indicate that the proposed method can effectively suppress the acquisition footprint with fidelity to the original data.


1984 ◽  
Vol 74 (3) ◽  
pp. 1059-1078
Author(s):  
P. A. Tyraskis ◽  
O. G. Jensen ◽  
D. E. Smylie ◽  
J. A. Linton

Abstract We develop a data editing method, for the optimum interpolation of multichannel time series containing time-coincident data gaps, in one, several, or all channels based upon the autoregressive data model. The method is applied to a set of very long-period seismic data recorded during the 19 August 1977 Indonesian earthquake, which shows several unassociated bursts of noise. Spectral analysis following editing and interpolation of the record indicates existence of systematic signals with periods higher than 1 hr and perhaps as long as 2 hr. The individual spectral peaks in this subseismic band have not been identified.


2021 ◽  
pp. 160-172
Author(s):  
Daniel N. Wilke ◽  
Stephan Schmidt ◽  
P. Stephan Heyns

2018 ◽  
Vol 15 (4) ◽  
pp. 1460-1469 ◽  
Author(s):  
Rafael R Manenti ◽  
Wilker E Souza ◽  
Milton J Porsani

Sign in / Sign up

Export Citation Format

Share Document