scholarly journals Novelty Detection with Self-Organizing Maps for Autonomous Extraction of Salient Tracking Features

Author(s):  
Yann Bernard ◽  
Nicolas Hueber ◽  
Bernard Girau
Author(s):  
AMINE CHAIBI ◽  
MUSTAPHA LEBBAH ◽  
HANANE AZZAG

This paper describe a new concept of "cluster outlier-ness". In order to quantify it, we propose a relative isolation score named group outlier factor (GOF). GOF is a score, which is computed during a clustering process using self-organizing maps. The main difference between GOF and existing methods is that, being an outlier is not associated to a single pattern but to a cluster. Thus, an outlier factor (OF) with respect to each cluster is computed for each new sample and compared to the GOF score associated for each cluster. OF is used as a novelty detection classifier. This approach allows to identify meaningful outlier-clusters and detects novel patterns that previous approaches could not find. Experimental results and comparison studies show that the use of GOF sensibly improves the results in term of cluster-outlier and novelty detection.


2007 ◽  
Vol 47 (6) ◽  
pp. 2044-2062 ◽  
Author(s):  
Dimitar Hristozov ◽  
Tudor I. Oprea ◽  
Johann Gasteiger

ChemInform ◽  
2008 ◽  
Vol 39 (7) ◽  
Author(s):  
Dimitar Hristozov ◽  
Tudor I. Oprea ◽  
Johann Gasteiger

2021 ◽  
Author(s):  
Juan Jose Saucedo-Dorantes ◽  
David Alejandro Elvira-Ortiz ◽  
Arturo Yosimar Jaen-Cuéllar ◽  
Manuel Toledano-Ayala

The inclusion of intelligent systems in the modern industry is demanding the development of the automatic monitoring and continuous analysis of the data related to entire processes, this is a challenge of the industry 4.0 for the energy management. In this regard, this chapter proposes a novelty detection methodology based on Self-Organizing Maps (SOM) for Power Quality Monitoring. The contribution and originality of this proposed method consider the characterization of synthetic electric power signals by estimating a meaningful set of statistical time-domain based features. Subsequently, the modeling of the data distribution through a collaborative SOM’s neuron grid models facilitates the detection of novel events related to the occurrence of power disturbances. The performance of the proposed method is validated by analyzing and assessing four different conditions such as normal, sag, swell, and fluctuations. The obtained results make the proposed method suitable for being implemented in embedded systems for online monitoring.


2019 ◽  
Vol 24 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Yvette Reisinger ◽  
Mohamed M. Mostafa ◽  
John P. Hayes

Author(s):  
Sylvain Barthelemy ◽  
Pascal Devaux ◽  
Francois Faure ◽  
Matthieu Pautonnier

Author(s):  
I. Álvarez ◽  
J.S. Font-Muñoz ◽  
I. Hernández-Carrasco ◽  
C. Díaz-Gil ◽  
P.M. Salgado-Hernanz ◽  
...  

Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 235
Author(s):  
Diego Galvan ◽  
Luciane Effting ◽  
Hágata Cremasco ◽  
Carlos Adam Conte-Junior

Background and objective: In the current pandemic scenario, data mining tools are fundamental to evaluate the measures adopted to contain the spread of COVID-19. In this study, unsupervised neural networks of the Self-Organizing Maps (SOM) type were used to assess the spatial and temporal spread of COVID-19 in Brazil, according to the number of cases and deaths in regions, states, and cities. Materials and methods: The SOM applied in this context does not evaluate which measures applied have helped contain the spread of the disease, but these datasets represent the repercussions of the country’s measures, which were implemented to contain the virus’ spread. Results: This approach demonstrated that the spread of the disease in Brazil does not have a standard behavior, changing according to the region, state, or city. The analyses showed that cities and states in the north and northeast regions of the country were the most affected by the disease, with the highest number of cases and deaths registered per 100,000 inhabitants. Conclusions: The SOM clustering was able to spatially group cities, states, and regions according to their coronavirus cases, with similar behavior. Thus, it is possible to benefit from the use of similar strategies to deal with the virus’ spread in these cities, states, and regions.


Sign in / Sign up

Export Citation Format

Share Document