statistical time
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 53)

H-INDEX

25
(FIVE YEARS 5)

Author(s):  
Sakinat Oluwabukonla Folorunso ◽  
Joseph Bamidele Awotunde ◽  
Oluwatobi Oluwaseyi Banjo ◽  
Ezekiel Adebayo Ogundepo ◽  
Nureni Olawale Adeboye

This research explored the precision of diverse time-series models for COVID-19 epidemic detection in all the thirty-six different states and the Federal Capital Territory (FCT) in Nigeria with the maximum count of daily cumulative of confirmed, recovered and death cases as of 4 November 2020 of COVID-19 and populace of each state. A 14-multi step ahead forecast system for active coronavirus cases was built, analyzed and compared for six (6) different deep learning-stimulated and statistical time-series models using two openly accessible datasets. The results obtained showed that based on RMSE metric, ARIMA model obtained the best values for four of the states (0.002537, 0.001969.12E-058, 5.36E-05 values for Lagos, FCT, Edo and Delta states respectively). While no method is all-encompassing for predicting daily active coronavirus cases for different states in Nigeria, ARIMA model obtains the highest-ranking prediction performance and attained a good position results in other states.


This research explored the precision of diverse time-series models for COVID-19 epidemic detection in all the thirty-six different states and the Federal Capital Territory (FCT) in Nigeria with the maximum count of daily cumulative of confirmed, recovered and death cases as of 4 November 2020 of COVID-19 and populace of each state. A 14-multi step ahead forecast system for active coronavirus cases was built, analyzed and compared for six (6) different deep learning-stimulated and statistical time-series models using two openly accessible datasets. The results obtained showed that based on RMSE metric, ARIMA model obtained the best values for four of the states (0.002537, 0.001969.12E-058, 5.36E-05 values for Lagos, FCT, Edo and Delta states respectively). While no method is all-encompassing for predicting daily active coronavirus cases for different states in Nigeria, ARIMA model obtains the highest-ranking prediction performance and attained a good position results in other states.


2022 ◽  
Author(s):  
Sandy Herho ◽  
Gisma Firdaus

This pilot study presents a novel statistical time-series approach for analyzing daily rainfall data in Kupang, East Nusa Tenggara, Indonesia. By using the piecewise cubic hermite interpolation algorithm, we succeeded in filling in the null values in the daily rainfall time series. We then analyzed the monthly average and its pattern using the continuous wavelet transform (CWT) algorithm, which shows the strong annual pattern of rainfall in this region. In addition, we use the rainfall anomaly index (RAI) function to standardize daily rainfall as an indicator of dry/wet conditions in this region. Then we also use the daily RAI time-series objects from 1978 to 2020 for modeling and predicting daily RAI over the next year. The result is the root mean squared error (RMSE) of 0.8424041040593219. This Prophet model is also able to capture the linear trend of increasing drought throughout the study time period and the annual pattern of wet/dry conditions which is in accordance with previous study by Aldrian and Susanto (2003).


2022 ◽  
Vol 14 (1) ◽  
pp. 197
Author(s):  
Soner Uereyen ◽  
Felix Bachofer ◽  
Claudia Kuenzer

The analysis of the Earth system and interactions among its spheres is increasingly important to improve the understanding of global environmental change. In this regard, Earth observation (EO) is a valuable tool for monitoring of long term changes over the land surface and its features. Although investigations commonly study environmental change by means of a single EO-based land surface variable, a joint exploitation of multivariate land surface variables covering several spheres is still rarely performed. In this regard, we present a novel methodological framework for both, the automated processing of multisource time series to generate a unified multivariate feature space, as well as the application of statistical time series analysis techniques to quantify land surface change and driving variables. In particular, we unify multivariate time series over the last two decades including vegetation greenness, surface water area, snow cover area, and climatic, as well as hydrological variables. Furthermore, the statistical time series analyses include quantification of trends, changes in seasonality, and evaluation of drivers using the recently proposed causal discovery algorithm Peter and Clark Momentary Conditional Independence (PCMCI). We demonstrate the functionality of our methodological framework using Indo-Gangetic river basins in South Asia as a case study. The time series analyses reveal increasing trends in vegetation greenness being largely dependent on water availability, decreasing trends in snow cover area being mostly negatively coupled to temperature, and trends of surface water area to be spatially heterogeneous and linked to various driving variables. Overall, the obtained results highlight the value and suitability of this methodological framework with respect to global climate change research, enabling multivariate time series preparation, derivation of detailed information on significant trends and seasonality, as well as detection of causal links with minimal user intervention. This study is the first to use multivariate time series including several EO-based variables to analyze land surface dynamics over the last two decades using the causal discovery algorithm PCMCI.


2021 ◽  
Vol 18 (182) ◽  
Author(s):  
Emma Southall ◽  
Tobias S. Brett ◽  
Michael J. Tildesley ◽  
Louise Dyson

Early warning signals (EWSs) are a group of statistical time-series signals which could be used to anticipate a critical transition before it is reached. EWSs are model-independent methods that have grown in popularity to support evidence of disease emergence and disease elimination. Theoretical work has demonstrated their capability of detecting disease transitions in simple epidemic models, where elimination is reached through vaccination, to more complex vector transmission, age-structured and metapopulation models. However, the exact time evolution of EWSs depends on the transition; here we review the literature to provide guidance on what trends to expect and when. Recent advances include methods which detect when an EWS becomes significant; the earlier an upcoming disease transition is detected, the more valuable an EWS will be in practice. We suggest that future work should firstly validate detection methods with synthetic and historical datasets, before addressing their performance with real-time data which is accruing. A major challenge to overcome for the use of EWSs with disease transitions is to maintain the accuracy of EWSs in data-poor settings. We demonstrate how EWSs behave on reported cases for pertussis in the USA, to highlight some limitations when detecting disease transitions with real-world data.


2021 ◽  
Author(s):  
Wei Jiang ◽  
Kai Zhang ◽  
Wu Zhao ◽  
Xin Guo

Abstract The emotional needs for products have increased significantly with the recent improvements in living standards. Attribute evaluation forms the core of Kansei engineering in emotion-oriented products, and is practically quite subjective in nature. Essentially, attribute evaluation is a fuzzy classification task, whose quantitative results change slightly with statistical time and statistical objects, making it difficult to accurately describe using standard mathematical models. In this paper, we propose a novel deep-learning-assisted fuzzy attribute-evaluation (DLFAE) method, which could generate quantitative evaluation results. In comparison to existing methods, the proposed method combines subjective evaluation with convolutional neural networks, which facilitates the generation of quantitative evaluation results. Additionally, this strategy has better transferability for different situations, increasing its versatility and applicability. This, in turn, reduces the computational burden of evaluation and improves operational efficiency.


2021 ◽  
pp. 0309524X2110287
Author(s):  
Chantelle Y Janse van Vuuren ◽  
Hendrik J Vermeulen ◽  
Matthew Groch

The optimized siting of grid-scale renewable generation is a viable technique to minimize the variable component of the electricity generation portfolio. This process, however, requires simulated meteorological datasets, and consequently, significant computational power to perform detailed studies. This is particularly true for countries with large geographic areas. Clustering is a viable data reduction technique that can be utilized to reduce the computational burden. This work proposes the use of Self-Organizing Maps to partition high-dimensional wind speed data using statistical features derived from Time-Of-Use tariff periods. This approach is undertaken with the view towards the optimization of wind farm siting for grid-support objectives where tariff incentivization is the main driver. The proposed approach is compared with clusters derived using Self-Organizing Maps with the temporal wind speed data for the input feature set. The results show increased cluster granularity, superior validation results and decreased execution time when compared with the temporal clustering approach.


Sign in / Sign up

Export Citation Format

Share Document