The Group Velocity Approximation

Author(s):  
Kurt E. Oughstun
Author(s):  
F. Hasselbach ◽  
A. Schäfer

Möllenstedt and Wohland proposed in 1980 two methods for measuring the coherence lengths of electron wave packets interferometrically by observing interference fringe contrast in dependence on the longitudinal shift of the wave packets. In both cases an electron beam is split by an electron optical biprism into two coherent wave packets, and subsequently both packets travel part of their way to the interference plane in regions of different electric potential, either in a Faraday cage (Fig. 1a) or in a Wien filter (crossed electric and magnetic fields, Fig. 1b). In the Faraday cage the phase and group velocity of the upper beam (Fig.1a) is retarded or accelerated according to the cage potential. In the Wien filter the group velocity of both beams varies with its excitation while the phase velocity remains unchanged. The phase of the electron wave is not affected at all in the compensated state of the Wien filter since the electron optical index of refraction in this state equals 1 inside and outside of the Wien filter.


1978 ◽  
Vol 125 (7) ◽  
pp. 549-565 ◽  
Author(s):  
V.G. Polevoi ◽  
S.M. Rytov

2019 ◽  
Author(s):  
Gabriel Gallardo-Giozza ◽  
D. Nicolás Espinoza ◽  
Carlos Torres-Verdín ◽  
Elsa Maalouf

2017 ◽  
Vol 9 (3) ◽  
pp. 03039-1-03039-4 ◽  
Author(s):  
Y. M. Aleksandrov ◽  
◽  
V. V. Yatsishen ◽  

Sign in / Sign up

Export Citation Format

Share Document