index of refraction
Recently Published Documents


TOTAL DOCUMENTS

1452
(FIVE YEARS 115)

H-INDEX

66
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Jorge-Alberto Peralta-Ángeles ◽  
Jorge-Alejandro Reyes-Esq

Abstract An analytical and numerical study of hybrid photonic-plasmonic crystals is presented. The proposed theoretical model describes a system composed of a dielectric photonic crystal on a metallic thin film. To show the validity and usefulness of the model, four particular structures are analyzed, a one-dimensional crystal and three lattices of two-dimensional crystals. The model can calculate the photonic band structure of photonic-plasmonic crystals as a function of structural characteristics, showing two partial bandgaps for a square lattice, and complete bandgaps for triangular lattices. Furthermore, using a particular high-symmetry path, a full bandgap emerges in rectangular lattices, even with a small index of refraction contrast. Using the analytical model, a dataset is generated to train an artificial neural network to predict the center and width of the bandgap, that is, the forward design. In addition, an artificial neural network is trained to tune the optical response, that is, to perform the inverse design. The analytical results are consistent with the physics of the system studied and are supported by numerical simulations. Moreover, the prediction accuracy of the artificial neural networks is better than 95%. Overall, this paper reports a useful tool for tuning the optical properties of hybrid photonic-plasmonic crystals with potential applications in waveguides, nanocavities, mirrors, etc.


2022 ◽  
Author(s):  
Gwendolyn Wang ◽  
Yuzhe Peng ◽  
Wenting Sun ◽  
Yi C. Mazumdar

2021 ◽  
Author(s):  
Mary Ann Odete ◽  
Rostislav Boltyanskiy ◽  
Fook Chiong Cheong ◽  
Laura Philips

Abstract Total Holographic Characterization (THC) is presented here as an efficient, automated, label-free method of accurately identifying cell viability. THC is a single-particle characterization technology that determines the size and index of refraction of individual particles using the Lorenz-Mie theory of light scattering. Although assessment of cell viability is a challenge in many applications, including biologics manufacturing, traditional approaches often include unreliable labeling with dyes and/or time consuming methods of manually counting cells. In this work we measured the viability of Saccharomyces cerevisiae yeast in the presence of various concentrations of isopropanol as a function of time. All THC measurements were performed in the native environment of the sample with no dilution or addition of labels. We compared our results with THC to manual counting of living and dead cells as distinguished with trypan blue dye. Our findings demonstrate that THC can effectively distinguish living and dead yeast cells by the index of refraction of individual cells.


Author(s):  
Nidhi Sohrot ◽  
Indrayani Jhadhav ◽  
Sohan Lohiya

Background: Astigmatism is an abnormality within the curvature of the attention. It occurs when light rays strike a spherical lens obliquely, or the line of vision to its principal axis is not parallel. Refraction away from the axis occurs when light strikes a lens obliquely and distorts the image formed. Aim: This study aimed to look at the prevalence of against-the-rule, with the-rule, and oblique-axis astigmatism in children. The change in cylinder index of refraction power and alignment of astigmatism in babies and young children is studied. Methodology: To conduct the study and thoroughly search the literature separately, references and abstracts were reviewed. Books like Parson’s diseases of the Eye by Dr. Radhika Tandon and several articles, WHO website, etc., were referred. Results: The study relied upon many studies on refractions procured by the near-retinoscopy methodology that knowledgeable Refractionist accomplished. Conclusion: It can be concluded that young children have a high incidence of against (???) type of astigmatism and that after this age (which age?), most children are with the rule.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7364
Author(s):  
Dario Schiavon ◽  
Robert Mroczyński ◽  
Anna Kafar ◽  
Grzegorz Kamler ◽  
Iryna Levchenko ◽  
...  

Gallium nitride (GaN) doped with germanium at a level of 1020 cm−3 is proposed as a viable material for cladding layers in blue- and green-emitting laser diodes. Spectral reflectometry and ellipsometry are used to provide evidence of a reduced index of refraction in such layers. The refractive-index contrast to undoped GaN is about 0.990, which is comparable to undoped aluminium gallium nitride (AlGaN) with an aluminium composition of 6%. Germanium-doped GaN layers are lattice-matched to native GaN substrates; therefore, they introduce no strain, cracks, and wafer bowing. Their use, in place of strained AlGaN layers, will enable significant improvements to the production process yield.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1418
Author(s):  
Yi-Jun Jen ◽  
Wei-Chieh Ma ◽  
Ting-Yen Lin

TiN thin films were obliquely bideposited with different subdeposit thicknesses. The morphology of the bideposited film was varied from a nano-zigzag array to a vertically grown columnar structure by reducing the subdeposit thickness. The principal index of refraction and extinction coefficient were obtained to explain the measured reflectance and transmittance spectra. The loss of the bideposited thin film decreased as the thickness of the subdeposit decreased. The principal indices for normal incidence were near or under unity, indicating the low reflection by the bideposited thin films. A TiN film with a subdeposit thickness of 3 nm demonstrated an average index of refraction of 0.83 and extinction coefficient of below 0.2 for visible wavelengths. The retrieved principal refractive indexes explained the anisotropic transmission and reflection. For most normal incident cases, the analysis offers the tunable anisotropic property of a TiN nanostructured film for multilayer design in the future.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jayanta Aich ◽  
Angshuman Majumdar ◽  
Sankar Gangopadhyay

Abstract A new technique is presented for computing very useful propagation parameters like effective core area and effective index of refraction of mono-mode dispersion shifted and dispersion flattened fibers both in the presence and in the absence of Kerr nonlinearity. The technique involves application of accurate but simple expressions for modal fields developed by Chebyshev formalism. The study of the influence of Kerr nonlinearity on the aforementioned parameters, however, requires the application of the method of iteration. For the purpose of such investigation, in linear as well as nonlinear region, we take some typically used dispersion shifted and dispersion flattened fibers and we show that the results found by our simple formalism are in excellent agreement with those obtained by using complex finite element method. Further, the necessary evaluation by our simple method needs very less computations. Thus, our formalism generates ample opportunity for applications in many areas in the field of nonlinear optics.


2021 ◽  
Author(s):  
Mary Ann Odete ◽  
Rostislav Boltyanskiy ◽  
Fook Chiong Cheong ◽  
Laura Philips

Abstract Total Holographic Characterization (THC) is presented here as an efficient, automated, label-free method of accurately identifying cell viability. THC is a single-particle characterization technology that determines the size and index of refraction of individual particles using the Lorenz-Mie theory of light scattering. Although assessment of cell viability is a challenge in many applications, including biologics manufacturing, traditional approaches often include unreliable labeling with dyes and/or time consuming methods of manually counting cells. In this work we measured the viability of Saccharomyces cerevisiae yeast in the presence of various concentrations of isopropanol as a function of time. All THC measurements were performed in the native environment of the sample with no dilution or addition of labels. We compared our results with THC to manual counting of living and dead cells as distinguished with trypan blue dye. Our findings demonstrate that THC can effectively distinguish living and dead yeast cells by the index of refraction of individual cells.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259745
Author(s):  
Ching-Hsuan Huang ◽  
Jiayang He ◽  
Elena Austin ◽  
Edmund Seto ◽  
Igor Novosselov

Low-cost optical scattering particulate matter (PM) sensors report total or size-specific particle counts and mass concentrations. The PM concentration and size are estimated by the original equipment manufacturer (OEM) proprietary algorithms, which have inherent limitations since particle scattering depends on particles’ properties such as size, shape, and complex index of refraction (CRI) as well as environmental parameters such as temperature and relative humidity (RH). As low-cost PM sensors are not able to resolve individual particles, there is a need to characterize and calibrate sensors’ performance under a controlled environment. Here, we present improved calibration algorithms for Plantower PMS A003 sensor for mass indices and size-resolved number concentration. An aerosol chamber experimental protocol was used to evaluate sensor-to-sensor data reproducibility. The calibration was performed using four polydisperse test aerosols. The particle size distribution OEM calibration for PMS A003 sensor did not agree with the reference single particle sizer measurements. For the number concentration calibration, the linear model without adjusting for the aerosol properties and environmental conditions yields an absolute error (NMAE) of ~ 4.0% compared to the reference instrument. The calibration models adjusted for particle CRI and density account for non-linearity in the OEM’s mass concentrations estimates with NMAE within 5.0%. The calibration algorithms developed in this study can be used in indoor air quality monitoring, occupational/industrial exposure assessments, or near-source monitoring scenarios where field calibration might be challenging.


Sign in / Sign up

Export Citation Format

Share Document