coherent wave
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 27)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Hilary Chang ◽  
Nori Nakata

The distributed acoustic sensing (DAS) has great potential for monitoring natural-resource reservoirs and borehole conditions. However, the large volume of data and complicated wavefield add challenges to processing and interpretation. In this study, we demonstrate that seismic interferometry based on deconvolution is a convenient tool for analyzing this complicated wavefield. We extract coherent wave from the observation of a borehole DAS system at the Brady geothermal field in Nevada. Then, we analyze the coherent reverberating waves, which are used for monitoring temporal changes of the system. These reverberations are tirelessly observed in the vertical borehole DAS data due to cable or casing ringing. The deconvolution method allows us to examine the wavefield at different boundary conditions. We interpret the deconvolved wavefields using a simple 1D string model. The velocity of this wave varies with depth, observation time, temperature, and pressure. We find the velocity is sensitive to disturbances in the borehole related to increasing operation intensity. The velocity decreases with rising temperature, which potentially suggests that the DAS cable or the casing are subjected to high temperature. This reverberation can be decomposed into distinct vibration modes in the spectrum. We find that the wave is dispersive, and the the fundamental mode propagate with a large velocity. The method can be useful for monitoring borehole conditions or reservoir property changes. For the later, we need better coupling than through only friction in the vertical borehole to obtain coherent energy from the formation.


Author(s):  
Hilary Chang ◽  
Nori Nakata

The distributed acoustic sensing (DAS) has great potential for monitoring natural-resource reservoirs and borehole conditions. However, the large volume of data and complicated wavefield add challenges to processing and interpretation. In this study, we demonstrate that seismic interferometry based on deconvolution is a convenient tool for analyzing this complicated wavefield. We extract coherent wave from the observation of a borehole DAS system at the Brady geothermal field in Nevada. Then, we analyze the coherent reverberating waves, which are used for monitoring temporal changes of the system. These reverberations are tirelessly observed in the vertical borehole DAS data due to cable or casing ringing. The deconvolution method allows us to examine the wavefield at different boundary conditions. We interpret the deconvolved wavefields using a simple 1D string model. The velocity of this wave varies with depth, observation time, temperature, and pressure. We find the velocity is sensitive to disturbances in the borehole related to increasing operation intensity. The velocity decreases with rising temperature, which potentially suggests that the DAS cable or the casing are subjected to high temperature. This reverberation can be decomposed into distinct vibration modes in the spectrum. We find that the wave is dispersive, and the the fundamental mode propagate with a large velocity. The method can be useful for monitoring borehole conditions or reservoir property changes. For the later, we need better coupling than through only friction in the vertical borehole to obtain coherent energy from the formation.


Author(s):  
Victor Tyrode ◽  
Nicolas Totaro ◽  
Laurent Maxit ◽  
Alain Le Bot

This study is concerned with the distribution of flexural vibrations in plates excited with a Gaussian white noise. The distribution of energy can be characterized by its homogeneity and isotropy. Some particular geometries like the Bunimovitch stadium generate a field that is both homogeneous and isotropic. But other geometries produce a field that is homogeneous but not isotropic (like the rectangle panel) or non-isotropic and not homogeneous (like the circular panel). It is known that these features drive the establishment of diffuse field. However, in the present work, we show that even at high frequency and for these three particular geometries, the diffuse field cannot be reached rigorously. Owing to symmetries, the vibrational response is always enhanced on some particular lines and points by the effect of coherence between rays. The enhancement factors are predicted theoretically with the image-source method. The presence of energy enhancement is also shown experimentally by measuring the vibrational energy density in the 20 Hz–4 kHz frequency range for these three plates excited with a random white noise. Measurement of enhancement factors shows a good agreement with their theoretical predictions.


Author(s):  
Daiki Ito ◽  
Tomokazu Numano ◽  
Tetsushi Habe ◽  
Kazuyuki Mizuhara ◽  
Yuki Arita ◽  
...  

2021 ◽  
Vol 899 ◽  
pp. 292-299
Author(s):  
N.I. Mashukov ◽  
Albina M. Altueva ◽  
Galina M. Danilova-Volkovskaya ◽  
Gennady B. Shustov

The work considers the main elements of the magneto-dimensional transformation properties in the ultradispersed metallic media (UDM) as a nanomodifier in the process of the formation of nanocompositional polymeric materials (NCPM) based on polyolefins () from a melt. It has been shown that UDM nanoparticles in a melt under the influence and interaction with a thermoplastic matrix are capable of transforming their magnetic properties (to the level of superparamagnetic), structural-dimensional parameters, and chemical potential. With this mutual influence, the nanomodifier has an active effect on the thermoplastic melt at all stages of the formation of the structure-property relationship: structureless ensembles of macromolecules → formation of clusters (domains), lamellas, crystallites → formation of a network of intermolecular entanglements → crystallization of the thermoplastic matrix → transition to a condensed state. An important component of the formation of a fine-crystalline anisotropic NCPM structure is the intramatrix orientation of the structural elements of the thermoplastic in the melt under the influence of the magneto-dimensional transformable manifestations of the nanomodifier. A consequence of the formation of a fine-crystalline anisotropic structure of the NCPM is an increased level of a complex of physicochemical properties (such as deformation-strength, rheological, etc.). An assumption is made about the possibility of the formation of coherent wave packets from clusters (domains) and lamellas of crystallites of matrix thermoplastic with a minimum three-dimensional geometry under the action of superparamagnetic forces of nanoparticles of the nanomodifier.


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 308
Author(s):  
Yuchen He ◽  
Pierre Suret ◽  
Amin Chabchoub

Coherent wave groups are not only characterized by the intrinsic shape of the wave packet, but also by the underlying phase evolution during the propagation. Exact deterministic formulations of hydrodynamic or electromagnetic coherent wave groups can be obtained by solving the nonlinear Schrödinger equation (NLSE). When considering the NLSE, there are two asymptotically equivalent formulations, which can be used to describe the wave dynamics: the time- or space-like NLSE. These differences have been theoretically elaborated upon in the 2016 work of Chabchoub and Grimshaw. In this paper, we address fundamental characteristic differences beyond the shape of wave envelope, which arise in the phase evolution. We use the Peregrine breather as a referenced wave envelope model, whose dynamics is created and tracked in a wave flume using two boundary conditions, namely as defined by the time- and space-like NLSE. It is shown that whichever of the two boundary conditions is used, the corresponding local shape of wave localization is very close and almost identical during the evolution; however, the respective local phase evolution is different. The phase dynamics follows the prediction from the respective NLSE framework adopted in each case.


2021 ◽  
Author(s):  
Zhaoyang Wang ◽  
Yijie Shen ◽  
Zhensong Wan ◽  
Qiang Liu ◽  
Xing Fu

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 247
Author(s):  
André F. Müller ◽  
Ilja Rukin ◽  
Claas Falldorf ◽  
Ralf B. Bergmann

In this paper, we present a multicolor display via referenceless phase holography (RELPH). RELPH permits the display of full optical wave fields (amplitude and phase) using two liquid crystal phase-only spatial light modulators in a Michelson-interferometer-based arrangement. Complex wave fields corresponding to arbitrary real or artificial 3D scenes are decomposed into two mutually coherent wave fields of constant amplitude whose phase distributions are modulated onto the wave fields reflected by the respective light modulators. Here, we present the realization of that concept in two different ways: firstly, via temporal multiplexing using a single setup, switching between wavelengths for temporal integration of the respective wavefields; secondly, using spatial multiplexing of different wavelengths with multiple Michelson-based setups; and finally, we present an approach to magnify the 3D scenes displayed by light modulators with limited space–bandwidth product for a comfortable viewing experience.


2021 ◽  
Vol 126 (19) ◽  
Author(s):  
Philipp del Hougne ◽  
K. Brahima Yeo ◽  
Philippe Besnier ◽  
Matthieu Davy

2021 ◽  
Vol 9 ◽  
Author(s):  
Takuji Waseda ◽  
Shogo Watanabe ◽  
Wataru Fujimoto ◽  
Takehiko Nose ◽  
Tsubasa Kodaira ◽  
...  

The presence of coherent wave groups in the ocean has been so far postulated but still lacks evidence other than the indication from the radar images. Here, we attempt to reconstruct a wave field to monitor the evolution of a directional wave group based on a phase resolving two-dimensional non-linear wave model constrained by the stereo images of the ocean surface. The reconstructed wave field of around 20 wavelength squared revealed a coherent wave group compact in both propagating and transverse directions. The envelope of the wave group seems to be oriented obliquely to the propagation direction, somewhat resembling the directional soliton that was theoretically predicted and experimentally and numerically reproduced recently. A comparison with a constrained linear wave model demonstrated the coherence of the non-linear wave group that propagates for tens of wavelengths. The study elaborates a possibility of a spatially coherent short crested wave group in the directional sea.


Sign in / Sign up

Export Citation Format

Share Document