Mathematical Model of Spindle Unit Bearing Assembly

Author(s):  
E. S. Gasparov ◽  
L. B. Gasparova
Author(s):  
Volodymyr Gurey ◽  
Ihor Kuzio

The mathematical model of the elastic machine system has been developed, and describes the dynamic processes that occur during the frictional hardening of cylindrical surfaces of parts using a tool with transverse grooves on its working part, which forms a surface hardened metal layer with nanocrystalline structure. Transverse grooves on the working part of the tool increase the intensity of deformation of the surface layer in the contact area of the tool-part and the oscillating processes of the system. Differential equations that describe this process are based on Lagrange equations of the second kind. Based on the solution of the model’s the systems of equations, it is possible to determine the velocity and magnitude of displacement of a special device with autonomous drive of the tool, tool and treatment part during machining, reaction of device supports and spindle unit.


2008 ◽  
Author(s):  
Ishii Akira ◽  
Yoshida Narihiko ◽  
Hayashi Takafumi ◽  
Umemura Sanae ◽  
Nakagawa Takeshi
Keyword(s):  

1974 ◽  
Vol 13 (03) ◽  
pp. 151-158 ◽  
Author(s):  
D. A. B. Lindbebo ◽  
Fr. R. Watson

Recent studies suggest the determinations of clinical laboratories must be made more precise than at present. This paper presents a means of examining benefits of improvement in precision. To do this we use a mathematical model of the effect upon the diagnostic process of imprecision in measurements and the influence upon these two of Importance of Diagnosis and Prevalence of Disease. The interaction of these effects is grossly non-linear. There is therefore no proper intuitive answer to questions involving these matters. The effects can always, however, be calculated.Including a great many assumptions the modeling suggests that improvements in precision of any determination ought probably to be made in hospital rather than screening laboratories, unless Importance of Diagnosis is extremely high.


Sign in / Sign up

Export Citation Format

Share Document