bearing assembly
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 31)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 16 (3) ◽  
pp. 67-71
Author(s):  
Ilgiz Galiev ◽  
Ekaterina Parlyuk ◽  
Bulat Ziganshin

The problem of increasing the unit power of the engine without making changes to its design is solve by using a turbo supercharger. However, due to the intensity of the turbochargers operating mode, which are characterized by engine speed variability due to changing load indicators during operation (the number of rotor revolutions varies from 30000 min-1 to 120000 min-1, engine exhaust gases have a temperature of about 7500C), there is a need to improve the efficiency of the turbocharger bearing lubrication system. The purpose of the research is to ensure the operability and increase the reliability of turbochargers of diesel engines. To achieve this goal, a constructive solution for the lubrication system of the bearing assembly was propose, i.e., a membrane-type hydraulic accumulator was structurally provided in the lubrication system of the bearing assembly. Experimental studies were conduct to identify the operability and effectiveness of this constructive solution. The experiment was carried out on the KAMAZ-740 engine, the turbocharger shaft drive was carried out in normal mode, that is, from exhaust gases. L-02-40 fuel was use, SAE 10W–40 API was use as a lubricant. The turbocharger shaft speed varied from minimum to maximum by changing the engine speed and then stopping it. During the experiments, the following parameters of the turbocharger operation were measure: the duration of inertial rotation of the turbocharger rotor; the duration of pressure reduction in the turbocharger lubrication system. The dependences of the influence of the duration of the pressure drop in the turbocharger lubrication system and the duration of rotation of the turbocharger shaft by inertia with parallel inclusion of the accumulator in its lubrication system and in the normal mode of lubrication of the bearing are reveal. It is established that the installation of a device for feeding the turbocharger bearing during a sharp reduction in engine speed will increase the run-out of the turbocharger rotor from 30 to 65 s while maintaining the normal operating mode of the turbocharger lubrication system


2021 ◽  
Author(s):  
Anton Vladimirovich Butin ◽  
Darya Gennadievna Ryabtseva ◽  
Mikhail Aleksandrovich Shipulin
Keyword(s):  

Author(s):  
Valeriy V. Kirilovskiy ◽  
Yuri V. Belousov

Bearing units of lifting machines, products of construction, road, aviation, space and other branches of technology are very important structural elements, since the failure of even one bearing can cause the failure of the entire product. The results of experimental verification of the theoretical model of bearing operation under combined loading conditions are presented. The behavior under load of bearing units in the most general case can be represented by a sequence of five design schemes, expressed in the form of five statically indeterminate beams. The purpose of the experiments was to test this model under real loading conditions. The experiments were based on the analysis of the geometric shape of the curved elastic line, which the shaft of the bearing assembly acquires under load. The experimental results confirmed the validity of the model and showed that the previously generally accepted model of a two-support beam is not implemented. The conclusion is confirmed that in responsible lifting machines, as well as in responsible products of construction, road, aviation, space and other branches of technology, it is impractical to calculate bearings according to the traditional method, since an erroneous value of bearing durability can be obtained, overestimated from 28.37 to 26.663.9 times.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Miloš Stanković ◽  
Nenad Kolarević ◽  
Nikola Davidovic ◽  
Marko Miloš

Purpose The purpose of this paper is to improve the lubrication and remove as much as possible of the heat generated in the bearing assembly, embedded in the jet engine. Design/methodology/approach To determine the necessary values of the air pressure and oil amount, an experimental approach is used. For that purpose, a custom made test rig is developed. Findings Less amount of oil makes better lubrication conditions, reflected in the smaller temperature of the bearings. Concerning the air pressure, too high and too low air pressure deteriorates the lubrication parameters. An optimum value should be determined experimentally. The influence of oil amount is remarkably bigger than the influence of air pressure. Originality/value This experimental investigation provides an easy and fast way to improve the high-speed bearings lubrication parameters.


2021 ◽  
Author(s):  
Harpreet Kaur Dalgit Singh ◽  
Ho Ching Shearn ◽  
Bao Ta Quoc ◽  
Dien Nguyen Van

Abstract When drilling from a deepwater semisubmersible rig, the operator encountered wells problems, including lost circulation, influxes, and ballooning, in the 14 3/4-in. hole section. Managed Pressure Drilling (MPD) equipment that helped to mitigate these issues specifically, when stripping in the hole with the bottom hole assembly through the Rotating Control Device (RCD) bearing assembly while managing surge and swab pressures, monitoring the well while displacing heavy mud into the open hole, conditioning the contaminated mud, removing gas from the well, and fingerprinting the flow back to verify ballooning against influxes, and finally stripping out of the hole. The operator experienced a total loss of circulation at the 16-in. liner shoe at 1,633m while drilling the 14 3/4-in. hole section. Several lost-circulation material (LCM) pills of different weights were pumped to cure the losses without success. Then the well was flow-checked, the gain was noted, and the well shut-in. Having the MPD chokes and the Coriolis flowmeter in place made it possible to adjust the surface back pressure (SBP) accordingly within a small operating window. As a result, the operator could achieve the key objectives of stripping the drillstring in the hole, stripping out of the hole, and rolling over to spot 1.88SG heavy mud on the bottom using the pump and pull method. After LCM was pumped and a hesitation squeeze performed, well operations were stabilized, and the casing was run to a 2,111m measured depth. Advanced flow monitoring enabled the MPD to determine the required SBP for balancing the well. MPD applied 60psi of SBP and noted a gain of 8.3bbl/hr from the flowmeter. Next, MPD applied 65psi SBP and the well was static. Then, MPD applied 70psi SBP, and the well took losses at a rate of 19bbl/hr. MPD allowed to successfully strip the BHA in the hole through the RCD bearing assembly to the shoe. Correct string displacement observed via the MPD Virtual Trip Tank, achieved by adjusting the SBP from 62psi to 125psi. The closed-loop circulating system enabled safely circulating and conditioning contaminated gas-cut mud in the hole back to homogeneous mud. MPD reduced SBP incrementally and fingerprinted flow back at every step to give assurance that well ballooning, and not influxes, caused the flow back. Dynamically adjusting SBP, coupled with advanced monitoring of the returns flow using the Coriolis flowmeter, enabled balancing the well despite the challenges of a mixed mud gradient in the annulus and a narrow operational window. The MPD riser consisted of an RCD below-tension-ring (BTR)-s, flow spool, and top and bottom crossovers. Rig modifications involved fabricating the fixed piping to allow integrating MPD equipment with the rig system.


2021 ◽  
pp. 146808742110409
Author(s):  
Xin Zhao ◽  
Tiexiong Su ◽  
Xiaoyong Liu ◽  
Yunpeng Feng

Aiming at the difficulty of control and evaluation of main bearing deformation in the coordination design of the main bearing assembly structure for a high-speed diesel engine, taking MRD (the MRD means the maximum radial deformation of the bearing bush) of the bearing bush as an index to evaluate the out-of-round deformation of the bearing bush was proposed in this paper. The numerical calculation method of the MRD was given and the correctness of the method was experimentally verified. And the influence rules of different design parameters on the MRD were analyzed. On this basis, the coordination multi-objective optimization research of the main bearing assembly structure was carried out, and the optimization results were analyzed based on the influence rules of different design parameters on the reliability indexes. The results show that, when the pre-tightening force of the vertical bolt and the bearing bush interference are 240 kN and 0.17 mm respectively, the MRD reaches the minimum value. If the two values continue to increase, redundant loads can be generated, leading to the increase of the MRD. After optimization, the engine block strength coordination and bearing cap strength coordination had increased by 2.47% and 10.48%, respectively, and the deformation coordination and contact coordination had increased by 46.15% and 14.84%, respectively.


Author(s):  
Aynur Galimov ◽  
Ilgiz Galiev ◽  
Bulat Ziganshin ◽  
Rail Khusainov ◽  
Al'bert Muhametshin

The operability of the bearing assembly, which ensures the operation of the turbocharger at different speeds of its rotor, determines the reliability of the turbocharger as a whole. In this regard, the condition of the turbocharger bearing assembly determines the performance of the entire turbocharger. The purpose of the research is to justify the parameter that determines the performance of the turbocharger and a comparative assessment of changes in the state of turbochargers with a standard lubrication system and when using individual bearing assembly lubrication systems. The main factors affecting the state of the turbocharger bearing assembly, and hence the length of the rotor rotation by inertia after the engine stops, are considered to be: the increase in the clearance in the bearing assembly, the speed of rotation of the turbocharger rotor before the engine stops, and the time of pressure drop in the bearing assembly to zero after the engine stops. To obtain dependences describing the effect of the gap in the turbocharger bearing, the time of pressure drop in its lubrication system after the engine stops, and the change in the duration of rotation of the turbocharger rotor by inertia in dynamics, we conducted experimental studies. The experiment involved vehicles with a standard lubrication system and with an individual lubrication system for the turbocharger bearing assembly. The data was sample along the main diagonal of the matrix of experimental indicators. The dependences of the effect of the gap and the time of pressure drop in the bearing assembly on the duration of rotation of the rotor of the turbocharger by inertia after stopping the engine, at the speed of rotation of the rotor before stopping the engine 10000, 25000 and 40000 min-1 are obtained. A comparative analysis of this indicator is given for turbochargers with a standard and individual lubrication system of the bearing assembly, which shows that the duration of rotation of the rotor by inertia increases from 45 s (standard lubrication mode) to 90 s (with an individual lubrication system). This gives us reason to believe that the wear rate of the bearing will decrease by half during operation


2021 ◽  
Vol 6 (1) ◽  
pp. 25-31
Author(s):  
Vladimir Terentyev ◽  
Aleksei Bausov ◽  
Mihail Toropov

The purpose of the research is to increase the efficiency of hermetic ability of bearing assemblies by using com-bined ferrofluidic sealed. The research objective is theoretic justification of the maximum concentration of ferro-magnetic particles in fluid, investigation of hermatic ability of a combined ferrofluidic seal under conditions of tem-perature changing and speed of a shaft rotation of packing bearing assembly. The study of hermetic ability of lip and ferro-fluidic sealed was carried out on a test bench, allowing to determine the packing ability of seals both in static and dynamic mode. On the basis of theoretical data, formulas were determined to find the maximum concen-tration of hard and magnetic phases in a ferrofluid, and its composition based on a polyethylsiloxane liquid PES-5 with a 40 kA/m saturation magnetization and a 1.2 Pas dynamic viscosity coefficient was developed. A mixture of magnetite with powdered iron was used as the ferromagnetic phase. Oleic acid was used as a surfactant. Studies to determine hermetic capacity have shown a higher efficiency of the combined ferrofluidic seal compared to the lip one. During static test within the temperature range between 20 to 600C, the critical pressure difference of the com-bined seal was 4-16% higher than that of the lip seal. Temperature increase of the bearing assembly from 20 to 1200C causes a decrease in critical pressure difference of up to 50%. This is due to a decrease in the sedimentative stability of the magnetic fluid as a result of an increase in temperature. Studies show that the combined ferrofluidic seal has a higher hermetic tightness at the starting torque than the standard lip seal. In contrast to the lip seal (which tends to lose its tightness at the starting torque), no leakage of pressure fluid from the sealed unit was observed of the com-bined ferrofluidic one with a pressure drop of 0.094 MPa. The results obtained allow reasonably select the concen-tration of magnetic particles in the ferrofluid, and also prove the prospects of replacing standard lip seals with com-bined ferrofluidic ones.


Sign in / Sign up

Export Citation Format

Share Document