Efficient Reservoir Encoding Method for Near-Sensor Classification with Rate-Coding Based Spiking Convolutional Neural Networks

Author(s):  
Xu Yang ◽  
Shuangming Yu ◽  
Liyuan Liu ◽  
Jian Liu ◽  
Nanjian Wu
2020 ◽  
Vol 25 (4) ◽  
pp. 42-51
Author(s):  
Sineglazov V.M. ◽  
◽  
Chumachenko O.I. ◽  

The structural-parametric synthesis of neural networks of deep learning, in particular convolutional neural networks used in image processing, is considered. The classification of modern architectures of convolutional neural networks is given. It is shown that almost every convolutional neural network, depending on its topology, has unique blocks that determine its essential features (for example, Squeeze and Excitation Block, Convolutional Block of Attention Module (Channel attention module, Spatial attention module), Residual block, Inception module, ResNeXt block. It is stated the problem of structural-parametric synthesis of convolutional neural networks, for the solution of which it is proposed to use a genetic algorithm. The genetic algorithm is used to effectively overcome a large search space: on the one hand, to generate possible topologies of the convolutional neural network, namely the choice of specific blocks and their locations in the structure of the convolutional neural network, and on the other hand to solve the problem of structural-parametric synthesis of convolutional neural network of selected topology. The most significant parameters of the convolutional neural network are determined. An encoding method is proposed that allows to repre- sent each network structure in the form of a string of fixed length in binary format. After that, several standard genetic operations were identified, i.e. selection, mutation and crossover, which eliminate weak individuals of the previous generation and use them to generate competitive ones. An example of solving this problem is given, a database (ultrasound results) of patients with thyroid disease was used as a training sample.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Author(s):  
Edgar Medina ◽  
Roberto Campos ◽  
Jose Gabriel R. C. Gomes ◽  
Mariane R. Petraglia ◽  
Antonio Petraglia

Sign in / Sign up

Export Citation Format

Share Document