Cryopreservation as a Tool for Reef Restoration: 2019

Author(s):  
Mary Hagedorn ◽  
Rebecca Spindler ◽  
Jonathan Daly
Keyword(s):  
2021 ◽  
Vol 657 ◽  
pp. 123-133
Author(s):  
JR Hancock ◽  
AR Barrows ◽  
TC Roome ◽  
AS Huffmyer ◽  
SB Matsuda ◽  
...  

Reef restoration via direct outplanting of sexually propagated juvenile corals is a key strategy in preserving coral reef ecosystem function in the face of global and local stressors (e.g. ocean warming). To advance our capacity to scale and maximize the efficiency of restoration initiatives, we examined how abiotic conditions (i.e. larval rearing temperature, substrate condition, light intensity, and flow rate) interact to enhance post-settlement survival and growth of sexually propagated juvenile Montipora capitata. Larvae were reared at 3 temperatures (high: 28.9°C, ambient: 27.2°C, low: 24.5°C) for 72 h during larval development, and were subsequently settled on aragonite plugs conditioned in seawater (1 or 10 wk) and raised in different light and flow regimes. These juvenile corals underwent a natural bleaching event in Kāne‘ohe Bay, O‘ahu, Hawai‘i (USA), in summer 2019, allowing us to opportunistically measure bleaching response in addition to survivorship and growth. This study demonstrates how leveraging light and flow can increase the survivorship and growth of juvenile M. capitata. In contrast, larval preconditioning and substrate conditioning had little overall effect on survivorship, growth, or bleaching response. Importantly, there was no optimal combination of abiotic conditions that maximized survival and growth in addition to bleaching tolerances. This study highlights the ability to tailor sexual reproduction for specific restoration goals by addressing knowledge gaps and incorporating practices that could improve resilience in propagated stocks.


2020 ◽  
Vol 30 (11) ◽  
pp. 2050-2065
Author(s):  
Philine S. E. zu Ermgassen ◽  
Ruth H. Thurstan ◽  
Jorge Corrales ◽  
Heidi Alleway ◽  
Alvar Carranza ◽  
...  
Keyword(s):  

2019 ◽  
Vol 27 (4) ◽  
pp. 758-767 ◽  
Author(s):  
Christopher Doropoulos ◽  
Jesper Elzinga ◽  
Remment ter Hofstede ◽  
Mark van Koningsveld ◽  
Russell C. Babcock

2017 ◽  
Vol 20 (1) ◽  
Author(s):  
Melissa W Southwell ◽  
Jessica J Veenstra ◽  
Charles D Adams ◽  
Elizabeth V Scarlett ◽  
Kristy B Payne

2020 ◽  
Vol 635 ◽  
pp. 203-232 ◽  
Author(s):  
CJ Randall ◽  
AP Negri ◽  
KM Quigley ◽  
T Foster ◽  
GF Ricardo ◽  
...  

Coral-reef ecosystems are experiencing frequent and severe disturbance events that are reducing global coral abundance and potentially overwhelming the natural capacity for reefs to recover. While mitigation strategies for climate warming and other anthropogenic disturbances are implemented, coral restoration programmes are being established worldwide as an additional conservation measure to minimise coral loss and enhance coral recovery. Current restoration efforts predominantly rely on asexually produced coral fragments—a process with inherent practical constraints on the genetic diversity conserved and the spatial scale achieved. Because the resilience of coral communities has hitherto relied on regular renewal with natural recruits, the scaling-up of restoration programmes would benefit from greater use of sexually produced corals, which is an approach that is gaining momentum. Here we review the present state of knowledge of scleractinian coral sexual reproduction in the context of reef restoration, with a focus on broadcast-spawning corals. We identify key knowledge gaps and bottlenecks that currently constrain the sexual production of corals and consider the feasibility of using sexually produced corals for scaling-up restoration to the reef- and reef-system scales.


2014 ◽  
Vol 89 ◽  
pp. 20-28 ◽  
Author(s):  
Megan La Peyre ◽  
Jessica Furlong ◽  
Laura A. Brown ◽  
Bryan P. Piazza ◽  
Ken Brown

Author(s):  
William C Sharp ◽  
Brian A Reckenbeil

This photograph documents a batwing coral crab (Carpilius corallinus) preying on the sea urchin (Diadema antillarum) on a coral reef site enhanced with artificial shelter and staghorn coral. This interaction illustrates an interaction that to be better understood to develop a restoration strategy that harnesses positive ecological processes.


Sign in / Sign up

Export Citation Format

Share Document