Coral husbandry for ocean futures: leveraging abiotic factors to increase survivorship, growth, and resilience in juvenile Montipora capitata

2021 ◽  
Vol 657 ◽  
pp. 123-133
Author(s):  
JR Hancock ◽  
AR Barrows ◽  
TC Roome ◽  
AS Huffmyer ◽  
SB Matsuda ◽  
...  

Reef restoration via direct outplanting of sexually propagated juvenile corals is a key strategy in preserving coral reef ecosystem function in the face of global and local stressors (e.g. ocean warming). To advance our capacity to scale and maximize the efficiency of restoration initiatives, we examined how abiotic conditions (i.e. larval rearing temperature, substrate condition, light intensity, and flow rate) interact to enhance post-settlement survival and growth of sexually propagated juvenile Montipora capitata. Larvae were reared at 3 temperatures (high: 28.9°C, ambient: 27.2°C, low: 24.5°C) for 72 h during larval development, and were subsequently settled on aragonite plugs conditioned in seawater (1 or 10 wk) and raised in different light and flow regimes. These juvenile corals underwent a natural bleaching event in Kāne‘ohe Bay, O‘ahu, Hawai‘i (USA), in summer 2019, allowing us to opportunistically measure bleaching response in addition to survivorship and growth. This study demonstrates how leveraging light and flow can increase the survivorship and growth of juvenile M. capitata. In contrast, larval preconditioning and substrate conditioning had little overall effect on survivorship, growth, or bleaching response. Importantly, there was no optimal combination of abiotic conditions that maximized survival and growth in addition to bleaching tolerances. This study highlights the ability to tailor sexual reproduction for specific restoration goals by addressing knowledge gaps and incorporating practices that could improve resilience in propagated stocks.

2012 ◽  
pp. 11-16
Author(s):  
Milán Fehér ◽  
Péter Bársony ◽  
Edina Baranyai ◽  
József Posta ◽  
László Stündl

Artemia is a vital nutriment in the rearing of barramundi (Lates carcarifer), however it’s mineral trace element content does not cover the requirements of the larvae. In our experiment the assumption was wether the cobalt, zinc and manganese concentration of Artemia could be increased during a 24 hours of enrichment period, as well as we wanted to investigate the resulted interactions between the elements. For this purpose 50, 100 and 1000 mg l-1 cobalt-chloride treatements (Co50, Co100, Co1000) were applied while in the case of 50 and 100 mg l-1 treatments the enrichment was also complemented with zink-sulphate and manganese-chloride in the same concentrations. According to the results the zooplankton were able to accumulate cobalt in higher amount, and yet zinc and manganese had no significant effect on each other, a strong synergistic effect occurred between cobalt and manganese. After the enrichment period the impact of essential trace element supplemented live feed on the survival and growth of barramundi larvae was also studied. The experiment was carried out by using 15 days-old larvae applying a total of 9 treatments for two weeks (Control, Co50, Co100, Mn50, Mn100, CoZn50, CoZn100, CoMn50, CoMn100), in duplicates. Considering the per cent of survivals, no significant difference was observed between the treatements (P>0.05). In the case of CoMn50 and CoMn100, the loss statistically increased (P<0.05) compared to the Control (80.5±4.95%) group. Our results show, that the Mn100 and CoMn100 treatements resulted in  ignificantly higher (P<0.05 ) in divid ual bod y w eight s, how ever taki ng the survival also into consideration the Mn100 treatements proved to be the mosteffective.


2019 ◽  
Vol 66 (1-2) ◽  
pp. 41-47 ◽  
Author(s):  
Alejandro G. Farji-Brener ◽  
Sabrina Amador-Vargas

Abstract The physical structures built by animals are considered extended phenotypes that reflect how organisms make decisions and deal with changes in their biotic and abiotic environment. We summarize the results of several studies on Myrmeleon crudelis, a neuropteran larva that digs pit-traps in the soil to capture small arthropods (mostly ants) in the tropical dry forests of Costa Rica. Specifically, we showed how this species responds to varying biotic and abiotic conditions with changes in the design and/or location of its pit traps. Several experiments and field comparisons indicate that: 1) antlions adjust the pit design according to the abundance and type of prey. When prey is scarce, antlions increased trap diameter, an architectural adjustment that enhances the probability of prey encounter. Antlions that experienced high prey abundance, but the prey easily escaped, then increased pit depth, an adjustment that increases the chance of prey retention; 2) soil compaction strongly reduced pit-trap size and abundance; 3) antlions preferred soils with high proportion of fine-particle size to build pits. In fine-grained soil, pit-traps are larger and more efficient to capture prey than traps in coarse-grained soils; and 4) pit-traps may also be affected through indirect effects of soil structure and vegetation cover. Areas with fine-soil presented less plant cover, and plant cover could be beneficial for antlions because it acts as a shelter against direct sunlight and rainfall, or it may represent a cost because it is a source of leaflitter falling in the pits. The works summarized here how trap-building predators can exhibit considerable flexibility in trap construction in response to various biotic and abiotic factors, emphasizing how the study of extended phenotypes can be a useful approach to better understand the flexibility of foraging behaviors.


Author(s):  
Vinícius Londe ◽  
Jaqueline Alves Pereira ◽  
Hildeberto Caldas de Sousa

Abstract Although important, phenological studies comparing congeneric species or the same species growing in different habitats are still scarce for the tropics. Herein, we integrate phylogeny, ecology and biometeorology to verify whether the phenophases of congeneric species Myrcia laruotteana and Myrcia amazonica or Clethra scabra differ when their populations inhabit wetland and drained habitats and to determine what abiotic factors affect the vegetative and reproductive phenophases of these species in distinct habitat patches. We collected data on phenological events of 80 trees for 1 year in Itacolomi State Park, Brazil, and related them to abiotic local factors. Contrary to our expectation, the phenophases of the congeneric species did not differ between habitats, but the reproductive phenophases of C. scabra did and was greater in drained soil. Phenophases of C. scabra were affected by the depth of the water table and maximum temperature in the wetland soil. Insolation, precipitation, maximum temperature and relative humidity influenced Myrcia and Clethra in the drained soil. The differences between C. scabra populations suggest that this species is phenotypically plastic and can present distinct phenophases depending on the habitat it inhabits. On the other hand, the congeneric Myrcia species may have similar phenophases in distinct habitats because of their shared similarities during their evolution. This study provides a better understanding of the ecology of these species and their adaptations to different abiotic conditions. Data of this nature are important in a changing world and can inform strategies for adaptive management.


2017 ◽  
Author(s):  
Nicholas M. Caruso ◽  
Jeremy F. Jacobs ◽  
Leslie J. Rissler

AbstractUnderstanding the abiotic and biotic factors that determine the limits to species’ range is an essential goal in ecology, biogeography, evolutionary biology, and conservation biology. Moreover, predictions of shifts in species’ distributions under future changes in climate can be improved through understanding the spatial variation in survival, growth, and reproduction. A long-standing hypothesis postulates that, for Northern Hemisphere species, abiotic factors like temperature limit northern and/or higher elevation extents, while biotic factors like competition limit the southern and/or lower elevation range edges; though amphibians may not follow this general trend. Therefore, we combined environmental suitability models and a reciprocal transplant experiment across an elevational gradient to explore the role of the abiotic environment on the range limits of a montane salamander (Plethodon montanus). We first determined suitability of the abiotic environment for P. montanus, under current (1960 – 2000) and future (2050) climate scenarios. Second, we collected juveniles from each of three elevations and transplanted them within mesocosms such that each origin population was represented within each transplant location and vice-versa. We found that environmental suitability in 2050 decreased throughout the range compared to current predictions, especially at lower elevations. Additionally, we found that individuals’ starting body condition and transplant location were important predictors of survival, growth, and reproduction condition; importantly, individuals transplanted to low elevation had lower survival and growth rates compared to those moved to mid or high elevations. Our study provides experimental support that the abiotic environment limits the lower elevation distribution of P. montanus and, unfortunately, our results also paint a possible bleak future for this species and likely other montane terrestrial plethodontids. The abiotic environment, which will become increasingly limited under future changes in climate, was found to have more influence on survival and growth than population identity.


2018 ◽  
Author(s):  
John H. Boyle ◽  
Dino Martins ◽  
Paul M. Musili ◽  
Naomi E. Pierce

AbstractThe association between the African ant plant, Vachellia drepanolobium, and the ants that inhabit it has provided insight into the boundaries between mutualism and parasitism, the response of symbioses to environmental perturbations, and the ecology of species coexistence. We use a landscape genomics approach at sites sampled throughout the range of this system in Kenya to investigate the demographics and genetic structure of the different partners in the association. We find that different species of ant associates of V. drepanolobium show striking differences in their spatial distribution throughout Kenya, and these differences are only partly correlated with abiotic factors. A comparison of the population structure of the host plant and its three obligately arboreal ant symbionts, Crematogaster mimosae, Crematogaster nigriceps, and Tetraponera penzigi, shows that the ants exhibit somewhat similar patterns of structure throughout each of their respective ranges, but that this does not correlate in any clear way with the respective genetic structure of the populations of their host plants. A lack of evidence for local coadaptation in this system suggests that all partners have evolved to cope with a wide variety of biotic and abiotic conditions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jamie Craggs ◽  
James Guest ◽  
Mark Bulling ◽  
Michael Sweet

Abstract Reef restoration efforts, utilising sexual coral propagation need up-scaling to have ecologically meaningful impact. Post-settlement survival bottlenecks, in part due to competitive benthic algae interactions should be addressed, to improve productivity for these initiatives. Sea urchins are keystone grazers in reef ecosystems, yet feeding behaviour of adults causes physical damage and mortality to developing coral spat. To investigate if microherbivory can be utilised for co-culture, we quantitatively assessed how varying densities of juvenile sea urchins Mespilia globulus (Linnaeus, 1758), reared alongside the coral Acropora millepora (Ehrenberg, 1834) effected survival and growth of coral recruits. Spawning of both species were induced ex situ. A comparison of A. millepora spat reared in three M. globulus densities (low 16.67 m−2, medium 37.50 m−2, high 75.00 m−2) and a non-grazed control indicated coral survival is significantly influenced by grazing activity (p < 0.001) and was highest in the highest density treatment (39.65 ± 10.88%, mean ± s.d). Urchin grazing also significantly (p < 0.001) influenced coral size (compared to non-grazing control), with colonies in the medium and high-densities growing the largest (21.13 ± 1.02 mm & 20.80 ± 0.82, mean ± s.e.m). Increased urchin density did however have a negative influence on urchin growth, a result of limited food availability.


2020 ◽  
Vol 639 ◽  
pp. 127-136 ◽  
Author(s):  
JW Reustle ◽  
DL Smee

Abiotic factors can influence the distribution of organisms through physiological tolerance limits and by affecting their sensory performance in critical life history functions such as foraging or predator avoidance. In estuaries, salinity and turbidity directly influence the distribution of organisms but the indirect, synergistic effects of these factors on trophic interactions and community structure remain obscure. We investigated the effects of salinity and turbidity on oyster reef communities by comparing oyster reef community structure in low vs. high turbidity in consecutive years that varied considerably in rainfall and ambient salinity levels. Turbidity had significant effects in both 2016 and 2017 by interfering with fish foraging ability and consumption. In turbid sites, fish predation decreased by ~21%, crab mesopredators were 11% larger and nearly 5 times more abundant due to reduced top-down control by fish, and oyster reef biodiversity was 12% lower. In 2016, oysters were 350% less abundant in sites with abundant crab predators. However, in 2017, salinity increased, facilitating a new predator (oyster drills Stramonita haemastoma) to emerge onto reefs, and oysters were 7 times less abundant in sites with oyster drills despite having fewer crab predators. Thus, salinity and turbidity can indirectly affect food webs by facilitating different predators and influencing their sensory performance. Turbidity had significant effects on estuarine food webs regardless of salinity levels, and like salinity, turbidity should also be considered in oyster reef restoration and management of estuarine ecosystems.


2010 ◽  
Vol 20-23 ◽  
pp. 1253-1259
Author(s):  
Chang Jun Zhou ◽  
Xiao Peng Wei ◽  
Qiang Zhang

In this paper, we propose a novel algorithm for facial recognition based on features fusion in support vector machine (SVM). First, some local features and global features from pre-processed face images are obtained. The global features are obtained by making use of singular value decomposition (SVD). At the same time, the local features are obtained by utilizing principal component analysis (PCA) to extract the principal Gabor features. Finally, the feature vectors which are fused with global and local features are used to train SVM to realize the face expression recognition, and the computer simulation illustrates the effectivity of this method on the JAFFE database.


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1313 ◽  
Author(s):  
Zac H. Forsman ◽  
Christopher A. Page ◽  
Robert J. Toonen ◽  
David Vaughan

Fusion is an important life history strategy for clonal organisms to increase access to shared resources, to compete for space, and to recover from disturbance. For reef building corals, fragmentation and colony fusion are key components of resilience to disturbance. Observations of small fragments spreading tissue and fusing over artificial substrates prompted experiments aimed at further characterizing Atlantic and Pacific corals under various conditions. Small (∼1–3 cm2) fragments from the same colony spaced regularly over ceramic tiles resulted in spreading at rapid rates (e.g., tens of square centimeters per month) followed by isogenic fusion. Using this strategy, we demonstrate growth, in terms of area encrusted and covered by living tissue, ofOrbicella faveolata,Pseudodiploria clivosa, andPorites lobataas high as 63, 48, and 23 cm2per month respectively. We found a relationship between starting and ending size of fragments, with larger fragments growing at a faster rate.Porites lobatashowed significant tank effects on rates of tissue spreading indicating sensitivity to biotic and abiotic factors. The tendency of small coral fragments to encrust and fuse over a variety of surfaces can be exploited for a variety of applications such as coral cultivation, assays for coral growth, and reef restoration.


Sign in / Sign up

Export Citation Format

Share Document