Convolutional Neural Networks for Computer Aided Diagnosis of Interdental and Rustling Sigmatism

Author(s):  
Andre Woloshuk ◽  
Michal Krecichwost ◽  
Zuzanna Miodonska ◽  
Dominika Korona ◽  
Pawel Badura
10.2196/18089 ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. e18089
Author(s):  
Ryoungwoo Jang ◽  
Namkug Kim ◽  
Miso Jang ◽  
Kyung Hwa Lee ◽  
Sang Min Lee ◽  
...  

Background Computer-aided diagnosis on chest x-ray images using deep learning is a widely studied modality in medicine. Many studies are based on public datasets, such as the National Institutes of Health (NIH) dataset and the Stanford CheXpert dataset. However, these datasets are preprocessed by classical natural language processing, which may cause a certain extent of label errors. Objective This study aimed to investigate the robustness of deep convolutional neural networks (CNNs) for binary classification of posteroanterior chest x-ray through random incorrect labeling. Methods We trained and validated the CNN architecture with different noise levels of labels in 3 datasets, namely, Asan Medical Center-Seoul National University Bundang Hospital (AMC-SNUBH), NIH, and CheXpert, and tested the models with each test set. Diseases of each chest x-ray in our dataset were confirmed by a thoracic radiologist using computed tomography (CT). Receiver operating characteristic (ROC) and area under the curve (AUC) were evaluated in each test. Randomly chosen chest x-rays of public datasets were evaluated by 3 physicians and 1 thoracic radiologist. Results In comparison with the public datasets of NIH and CheXpert, where AUCs did not significantly drop to 16%, the AUC of the AMC-SNUBH dataset significantly decreased from 2% label noise. Evaluation of the public datasets by 3 physicians and 1 thoracic radiologist showed an accuracy of 65%-80%. Conclusions The deep learning–based computer-aided diagnosis model is sensitive to label noise, and computer-aided diagnosis with inaccurate labels is not credible. Furthermore, open datasets such as NIH and CheXpert need to be distilled before being used for deep learning–based computer-aided diagnosis.


Sign in / Sign up

Export Citation Format

Share Document