ensemble learning
Recently Published Documents





Matheus Henrique Dal Molin Ribeiro ◽  
Ramon Gomes da Silva ◽  
Sinvaldo Rodrigues Moreno ◽  
Viviana Cocco Mariani ◽  
Leandro dos Santos Coelho

2022 ◽  
Vol 505 ◽  
pp. 119911
Wujun Dai ◽  
Huiying Jin ◽  
Tong Liu ◽  
Guangze Jin ◽  
Yuhong Zhang ◽  

Healthcare ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 166
Mohamed Mouhafid ◽  
Mokhtar Salah ◽  
Chi Yue ◽  
Kewen Xia

Novel coronavirus (COVID-19) has been endangering human health and life since 2019. The timely quarantine, diagnosis, and treatment of infected people are the most necessary and important work. The most widely used method of detecting COVID-19 is real-time polymerase chain reaction (RT-PCR). Along with RT-PCR, computed tomography (CT) has become a vital technique in diagnosing and managing COVID-19 patients. COVID-19 reveals a number of radiological signatures that can be easily recognized through chest CT. These signatures must be analyzed by radiologists. It is, however, an error-prone and time-consuming process. Deep Learning-based methods can be used to perform automatic chest CT analysis, which may shorten the analysis time. The aim of this study is to design a robust and rapid medical recognition system to identify positive cases in chest CT images using three Ensemble Learning-based models. There are several techniques in Deep Learning for developing a detection system. In this paper, we employed Transfer Learning. With this technique, we can apply the knowledge obtained from a pre-trained Convolutional Neural Network (CNN) to a different but related task. In order to ensure the robustness of the proposed system for identifying positive cases in chest CT images, we used two Ensemble Learning methods namely Stacking and Weighted Average Ensemble (WAE) to combine the performances of three fine-tuned Base-Learners (VGG19, ResNet50, and DenseNet201). For Stacking, we explored 2-Levels and 3-Levels Stacking. The three generated Ensemble Learning-based models were trained on two chest CT datasets. A variety of common evaluation measures (accuracy, recall, precision, and F1-score) are used to perform a comparative analysis of each method. The experimental results show that the WAE method provides the most reliable performance, achieving a high recall value which is a desirable outcome in medical applications as it poses a greater risk if a true infected patient is not identified.

2022 ◽  
Xianqi Zhang ◽  
Kai Wang ◽  
Tao Wang

Abstract Scientific prediction of precipitation changes has important guiding value and significance for revealing regional spatial and temporal patterns of precipitation changes, flood climate prediction, etc. Based on the fact that CEEMD can effectively overcome the interference of modal aliasing and white noise, fine composite multi-scale entropy can reorganize the same FCMSE value to reduce the modal component and improve the computational efficiency, and Stacking ensemble learning can effectively and conveniently improve the fitting effect of machine learning, a rainfall prediction method based on CEEMD-fine composite multi-scale entropy and Stacking ensemble learning is constructed, and it is applied to the prediction of monthly precipitation in the Xixia. The results show that, under the same conditions, the CEEMD-RCMSE-Stacking model reduces the root mean square error by 83.48% and 62.08%, and the mean absolute error by 83.25% and 61.84%, respectively, compared with the single Stacking model and CEEMD-LSTM, while the goodness-of-fit coefficients improve by 15.94% and 2.34%, respectively, which means that the CEEMD-RCMSE-Stacking model has higher prediction performance. The CEEMD-RCMSE-Stacking model has higher prediction performance.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 644
Hanqing Wang ◽  
Xiaoyuan Wang ◽  
Junyan Han ◽  
Hui Xiang ◽  
Hao Li ◽  

Aggressive driving behavior (ADB) is one of the main causes of traffic accidents. The accurate recognition of ADB is the premise to timely and effectively conduct warning or intervention to the driver. There are some disadvantages, such as high miss rate and low accuracy, in the previous data-driven recognition methods of ADB, which are caused by the problems such as the improper processing of the dataset with imbalanced class distribution and one single classifier utilized. Aiming to deal with these disadvantages, an ensemble learning-based recognition method of ADB is proposed in this paper. First, the majority class in the dataset is grouped employing the self-organizing map (SOM) and then are combined with the minority class to construct multiple class balance datasets. Second, three deep learning methods, including convolutional neural networks (CNN), long short-term memory (LSTM), and gated recurrent unit (GRU), are employed to build the base classifiers for the class balance datasets. Finally, the ensemble classifiers are combined by the base classifiers according to 10 different rules, and then trained and verified using a multi-source naturalistic driving dataset acquired by the integrated experiment vehicle. The results suggest that in terms of the recognition of ADB, the ensemble learning method proposed in this research achieves better performance in accuracy, recall, and F1-score than the aforementioned typical deep learning methods. Among the ensemble classifiers, the one based on the LSTM and the Product Rule has the optimal performance, and the other one based on the LSTM and the Sum Rule has the suboptimal performance.

Sign in / Sign up

Export Citation Format

Share Document