thermal imaging
Recently Published Documents





2022 ◽  
Vol 10 (1) ◽  
pp. 100475
Shuai Liu ◽  
Zhendong Zhao ◽  
Ziwen Wang ◽  
Tongxiang Diao ◽  
Keqin Zhang ◽  

Brian Meneses Claudio ◽  
Luis Nuñez Tapia ◽  
Witman Alvarado Díaz

In December 2019, a series of cases of pneumonia caused by SARS-CoV-2 were identified in Wuhan (China), which was declared by the WHO as a pandemic on March 11th , 2020, because it caused enormous problems for the global public health due to its rapid expansion. In Peru it was only on March 6th , 2020, that the first case of COVID-19 was reported, therefore, the government took some measures to control the spread of the virus. A biosafety measure that is frequently used is taking the temperature with an infrared thermometer, which is not well seen by some specialists due to the error it has, therefore, it would not represent a safe measurement, as other measurement systems do. . In view of this problem, in this article a thermal image processing system was carried out to detect possible cases of patients with COVID-19, in such a way that the system performs a more accurate measurement of body temperature and can be implemented in any place, where this measurement is intended to be carried out, helping to combat the spread of the virus that currently continues to affect many people. Through the development of the system, tests were conducted with various people, obtaining a more accurate measurement of body temperature with an efficiency of 95% at 1 m between the drone and the person, in such a way that if it presents a body temperature above 37°C could be infected with COVID-19. Keywords-- Thermal camera, COVID-19, Drone, MATLAB, WHO, Image processing

2022 ◽  
Vol 0 (0) ◽  
Karoliina Helanto ◽  
Riku Talja ◽  
Sai Li ◽  
Orlando J. Rojas

Abstract We study the incorporation of minerals (talc, kaolin and surface-treated calcium carbonate) in paperboard coatings based on PLA to improve their performance, often limited by the low crystallinity and moderate gas barrier of the polymer. Masterbatches of PLA-based blends mixed with the mineral fillers were melt-blended in a twin-screw extruder and applied as a coating on paperboard in a pilot-scale unit operating at velocities up to 140 m/min. Thermal imaging was used during the extrusion coating and the effect of the fillers was investigated as far as processability and their effect on the mechanical performance. A reduction of neck-in and improved adhesion between the coating and the substrate were achieved at intermediate mineral loadings. Excess filler and low coating weight generated pinholes, leading to a reduction of the integrity and mechanical properties of the coatings. Overall, we define the performance window for continuous, pilot-scale coating of paperboard with a biopolyester filled with mineral particles, opening the opportunity to realize operations in industrial settings.

Juan de Dios Unión-Sánchez ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Manuel Jesús Hervás-Pulido ◽  
Blas Ogáyar-Fernández

Currently, LED technology is an established form of lighting in our cities and homes. Its lighting performance, durability, energy efficiency and light, together with the economic savings that its use implies, are displacing other classic forms of lighting. However, some problems associated with the durability of the equipment related to the problems of thermal dissipation and high temperature have begun to be detected, which end up affecting their luminous intensity and the useful life. There are many studies that show a direct relationship between the low quality of LED lighting and the aging of the equipment or its overheating, observing the depreciation of the intensity of the light and the visual chromaticity performance that can affect the health of users by altering circadian rhythms. On the other hand, the shortened useful life of the luminaires due to thermal stress has a direct impact on the LCA (Life Cycle Analysis) and its environmental impact, which indirectly affects human health. The purpose of this article is to compare the results previously obtained, at different contour temperatures, by theoretical thermal simulation of the 3D model of LED street lighting luminaires through the ANSYS Fluent simulation software. Contrasting these results with the practical results obtained with a thermal imaging camera, the study shows how the phenomenon of thermal dissipation plays a fundamental role in the lighting performance of LED technology. The parameter studied in this work is junction temperature (Tj), and how it can be used to predict the luminous properties in the design phase of luminaires in order to increase their useful life.

2022 ◽  
Vol 43 (3) ◽  
Gavin Sutton ◽  
Sofia Korniliou ◽  
Aurik Andreu ◽  
David Wilson

AbstractAccurate temperature measurements are critical in manufacturing, affecting both product quality and energy consumption. At elevated temperatures, non-contact thermometers are often the only option. However, such instruments require prior knowledge of the surface emissivity, which is often unknown or difficult to determine, leading to large errors. Here we present a novel imaging luminescence thermometer based on the intensity ratio technique using magnesium fluorogermanate phosphor, with the potential to overcome this limitation. We describe measurements performed on a number of engineering alloys undergoing heat treatment at temperatures of up to 750 °C and compare these measurements against a traditional contact thermocouple and thermal imager system. Agreement between the luminescence and embedded thermocouple temperatures was found to be better than 45 °C at all temperatures. However, the thermal imager measurement on the bare metal samples, with the instrument emissivity set to 1.0, showed differences of up to 500 °C at 750 °C, a factor of 10 larger. In an effort to improve the thermal imager accuracy, its instrument emissivity was adjusted until its temperature agreed with that of the thermocouple. When measuring on the bare metal, the effective emissivity was strongly sample dependent, with mean values ranging from 0.205 to 0.784. Since the phosphor derived temperatures exhibited substantially smaller errors compared to the thermal imager, it is suggested that this method can be used to compliment the thermal imaging technique, by providing a robust mechanism for adjustment of the instrument emissivity until agreement between the thermal imager and phosphor thermometer is obtained.

2022 ◽  
Muhammad Amin ◽  
Saleh Abdullah Basamed ◽  
Ahmed Salem Qniqoon ◽  
Faisal Aied Alshabibi ◽  
Saleh Mohammed Ba Raean ◽  

Abstract A pyramidal shaped metamaterial absorber (PMA) supports broadband and polarization independent resonant absorption at optical frequencies. The PMA is designed by stack of alternative plasmonic/dielectric multilayers. These nanoplasmonic pyramids offers resonant absorption characteristics at wide range of optical frequencies. The optimized PMA structure allows 76% spectral absorption and nearly perfect absorption (over 90%) at several bands between range of 400 nm – 1500 nm wavelength. These light absorption characteristics of PMA are useful for photodetection, thermal imaging, thermal emitters, and solar cells etc.

Sign in / Sign up

Export Citation Format

Share Document