Design and Security Analysis of Certificateless Aggregate Signature Scheme

Author(s):  
Li Cui ◽  
Yang Heng ◽  
Wu Gang
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hang Tu ◽  
Debiao He ◽  
Baojun Huang

A new attack against a novel certificateless aggregate signature scheme with constant pairing computations is presented. To enhance security, a new certificateless signature scheme is proposed first. Then a new certificateless aggregate signature scheme with constant pairing computations based on the new certificateless signature scheme is presented. Security analysis shows that the proposed certificateless aggregate signature scheme is provably secured in the random oracle.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Muhammad Asghar Khan ◽  
Insaf Ullah ◽  
Mohammed H. Alsharif ◽  
Abdulaziz H. Alghtani ◽  
Ayman A. Aly ◽  
...  

Internet of drones (IoD) is a network of small drones that leverages IoT infrastructure to deliver real-time data communication services to users. On the one hand, IoD is an excellent choice for a number of military and civilian applications owing to key characteristics like agility, low cost, and ease of deployment; on the other hand, small drones are rarely designed with security and privacy concerns in mind. Intruders can exploit this vulnerability to compromise the security and privacy of IoD networks and harm the information exchange operation. An aggregate signature scheme is the best solution for resolving security and privacy concerns since multiple drones are connected in IoD networks to gather data from a certain zone. However, most aggregate signature schemes proposed in the past for this purpose are either identity-based or relied on certificateless cryptographic methods. Using these methods, a central authority known as a trusted authority (TA) is responsible for generating and distributing secret keys of every user. However, the key escrow problem is formulated as knowing the secret key generated by the TA. These methods are hampered by key distribution issues, which restrict their applicability in a variety of situations. To address these concerns, this paper presents a certificate-based aggregate signature (CBS-AS) scheme based on hyperelliptic curve cryptography (HECC). The proposed scheme has been shown to be both efficient in terms of computation cost and unforgeable while testing its toughness through formal security analysis.


2020 ◽  
Vol 10 (4) ◽  
pp. 1353 ◽  
Author(s):  
Jinjing Shi ◽  
Shuhui Chen ◽  
Jiali Liu ◽  
Fangfang Li ◽  
Yanyan Feng ◽  
...  

A novel encryption algorithm called the chained phase-controlled operation (CPCO) is presented in this paper, inspired by CNOT operation, which indicates a stronger correlation among message states and each message state depending on not only its corresponding key but also other message states and their associated keys. Thus, it can prevent forgery effectively. According to the encryption algorithm CPCO and the classical dual signature protocols, a quantum dual signature scheme based on coherent states is proposed in this paper. It involves three participants, the customer Alice, the merchant Bob and the bank Trent. Alice expects to send her order message and payment message to Bob and Trent, respectively. It is required that the two messages must be linked to guarantee the payment is paid for the corresponding order. Thus, Alice can generate a quantum dual signature to achieve the goal. In detail, Alice firstly signs her two messages with the shared secret key. Then She connects the two signatures into a quantum dual signature. Finally, Bob and Trent severally verify the signatures of the order message and the payment message. Security analysis shows that our scheme can ensure its security against forgery, repudiation and denial. In addition, simulation experiments based on the Strawberry Fields platform are performed to valid the feasibility of CPCO. Experimental results demonstrate that CPCO is viable and the expected coherent states can be acquired with high fidelity, which indicates that the encryption algorithm of the scheme can be implemented on quantum devices effectively.


Sign in / Sign up

Export Citation Format

Share Document