scholarly journals Quantum Dual Signature with Coherent States Based on Chained Phase-Controlled Operations

2020 ◽  
Vol 10 (4) ◽  
pp. 1353 ◽  
Author(s):  
Jinjing Shi ◽  
Shuhui Chen ◽  
Jiali Liu ◽  
Fangfang Li ◽  
Yanyan Feng ◽  
...  

A novel encryption algorithm called the chained phase-controlled operation (CPCO) is presented in this paper, inspired by CNOT operation, which indicates a stronger correlation among message states and each message state depending on not only its corresponding key but also other message states and their associated keys. Thus, it can prevent forgery effectively. According to the encryption algorithm CPCO and the classical dual signature protocols, a quantum dual signature scheme based on coherent states is proposed in this paper. It involves three participants, the customer Alice, the merchant Bob and the bank Trent. Alice expects to send her order message and payment message to Bob and Trent, respectively. It is required that the two messages must be linked to guarantee the payment is paid for the corresponding order. Thus, Alice can generate a quantum dual signature to achieve the goal. In detail, Alice firstly signs her two messages with the shared secret key. Then She connects the two signatures into a quantum dual signature. Finally, Bob and Trent severally verify the signatures of the order message and the payment message. Security analysis shows that our scheme can ensure its security against forgery, repudiation and denial. In addition, simulation experiments based on the Strawberry Fields platform are performed to valid the feasibility of CPCO. Experimental results demonstrate that CPCO is viable and the expected coherent states can be acquired with high fidelity, which indicates that the encryption algorithm of the scheme can be implemented on quantum devices effectively.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Qiang Zhang ◽  
Xianglian Xue ◽  
Xiaopeng Wei

We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.


Author(s):  
Gustavo Rodríguez- Cardona ◽  
Leonardo Humberto Ramírez- Beltrán ◽  
Marco Tulio Ramírez- Torres

The present investigation is proposing a new partial encryption algorithm for digital image, using the synchronization of cellular automata based on the local rule 90. Unlike other partial encryption algorithm, which become vulnerable to attacks such as Replacement Attack or Reconstruction Attack, this system encodes different bit planes, in function of the secret key, that is, for each block of clear text, different bits are encrypted to prevent that with an elimination operation of the encrypted bits information can be revealed. The synchronization of cellular automata has proven to be a useful tool for data encryption because it is sensitivity to initial conditions and, in addition, rule 90 is considered a chaotic standard. Both characteristics ensure cryptographic and perceptive security. Based on the results of the security analysis, this research could be an attractive option for image encryption with less computer cost and without compromising information confidentiality.


2020 ◽  
Vol 10 (17) ◽  
pp. 5770
Author(s):  
Yanyan Feng ◽  
Qian Zhang ◽  
Jinjing Shi ◽  
Shuhui Chen ◽  
Ronghua Shi

The quantum proxy signature is one of the most significant formalisms in quantum signatures. We put forward a quantum proxy signature scheme using quantum walk-based teleportation and quantum one-time pad CNOT (QOTP-CNOT) operation, which includes four phases, i.e., initializing phase, authorizing phase, signing phase and verifying phase. The QOTP-CNOT is achieved by attaching the CNOT operation upon the QOTP and it is applied to produce the proxy signature state. The quantum walk-based teleportation is employed to transfer the encrypted message copy derived from the binary random sequence from the proxy signer to the verifier, in which the required entangled states do not need to be prepared ahead and they can be automatically generated during quantum walks. Security analysis demonstrates that the presented proxy signature scheme has impossibility of denial from the proxy and original signers, impossibility of forgery from the original signatory and the verifier, and impossibility of repudiation from the verifier. Notably, the discussion shows the complexity of the presented algorithm and that the scheme can be applied in many real scenarios, such as electronic payment and electronic commerce.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Zhang ◽  
Yutong Zhang

Image encryption technology has been applied in many fields and is becoming the main way of protecting the image information security. There are also many ways of image encryption. However, the existing encryption algorithms, in order to obtain a better effect of encryption, always need encrypting several times. There is not an effective method to decide the number of encryption times, generally determined by the human eyes. The paper proposes an image encryption algorithm based on chaos and simultaneously proposes a balanced pixel algorithm to determine the times of image encryption. Many simulation experiments have been done including encryption effect and security analysis. Experimental results show that the proposed method is feasible and effective.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950294 ◽  
Author(s):  
Li Li Yan ◽  
Shi Bin Zhang ◽  
Yan Chang ◽  
Zhi Wei Sheng ◽  
Fan Yang

Quantum key agreement (QKA) can generate a shared secret key which is equally negotiated by all the participants in the protocol. In most of the QKA protocols, all the participants require quantum capabilities. But the quantum devices are too expensive for participants. This paper proposes a mutual semi-quantum key agreement protocol which allows two parties (Alice and Bob) to negotiate a shared secret key equally. In the protocol, Alice can perform any quantum operation, but Bob is a classical participant which can only perform reflection, measurement and reorder operation. Even though Bob has fewer quantum resources, Alice and Bob have an equal contribution to the shared final key, no one can determine the shared key alone. In addition, we demonstrate the security of the proposed protocol. The analysis results show that the proposed protocol not only resists against some common attacks but also assures the fairness property. It is significant for communication participant without enough quantum devices to achieve quantum communication. The proposed protocol can be implemented with present quantum technologies.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4721
Author(s):  
Mohammed B. M. Kamel ◽  
Yuping Yan ◽  
Peter Ligeti ◽  
Christoph Reich

While the number of devices connected together as the Internet of Things (IoT) is growing, the demand for an efficient and secure model of resource discovery in IoT is increasing. An efficient resource discovery model distributes the registration and discovery workload among many nodes and allow the resources to be discovered based on their attributes. In most cases this discovery ability should be restricted to a number of clients based on their attributes, otherwise, any client in the system can discover any registered resource. In a binary discovery policy, any client with the shared secret key can discover and decrypt the address data of a registered resource regardless of the attributes of the client. In this paper we propose Attred, a decentralized resource discovery model using the Region-based Distributed Hash Table (RDHT) that allows secure and location-aware discovery of the resources in IoT network. Using Attribute Based Encryption (ABE) and based on predefined discovery policies by the resources, Attred allows clients only by their inherent attributes, to discover the resources in the network. Attred distributes the workload of key generations and resource registration and reduces the risk of central authority management. In addition, some of the heavy computations in our proposed model can be securely distributed using secret sharing that allows a more efficient resource registration, without affecting the required security properties. The performance analysis results showed that the distributed computation can significantly reduce the computation cost while maintaining the functionality. The performance and security analysis results also showed that our model can efficiently provide the required security properties of discovery correctness, soundness, resource privacy and client privacy.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Muhammad Asghar Khan ◽  
Insaf Ullah ◽  
Mohammed H. Alsharif ◽  
Abdulaziz H. Alghtani ◽  
Ayman A. Aly ◽  
...  

Internet of drones (IoD) is a network of small drones that leverages IoT infrastructure to deliver real-time data communication services to users. On the one hand, IoD is an excellent choice for a number of military and civilian applications owing to key characteristics like agility, low cost, and ease of deployment; on the other hand, small drones are rarely designed with security and privacy concerns in mind. Intruders can exploit this vulnerability to compromise the security and privacy of IoD networks and harm the information exchange operation. An aggregate signature scheme is the best solution for resolving security and privacy concerns since multiple drones are connected in IoD networks to gather data from a certain zone. However, most aggregate signature schemes proposed in the past for this purpose are either identity-based or relied on certificateless cryptographic methods. Using these methods, a central authority known as a trusted authority (TA) is responsible for generating and distributing secret keys of every user. However, the key escrow problem is formulated as knowing the secret key generated by the TA. These methods are hampered by key distribution issues, which restrict their applicability in a variety of situations. To address these concerns, this paper presents a certificate-based aggregate signature (CBS-AS) scheme based on hyperelliptic curve cryptography (HECC). The proposed scheme has been shown to be both efficient in terms of computation cost and unforgeable while testing its toughness through formal security analysis.


2012 ◽  
Vol 433-440 ◽  
pp. 4645-4650 ◽  
Author(s):  
Yue Yue Wang ◽  
Dong Wan ◽  
Hong Yu Sheng

An image encryption algorithm by scrambling both the pixel location and the pixel value with sudoku grids matrix is proposed in this paper. As there is a certain mapping mode Between the Natural order and the numeric order in the row, line and block in sudoku grids, the proposed algorithm adopts the sudoku grids as secret key and scrambles the image according to the certain mapping mode. The algorithm is suitable for image with any size. The simulation experiments show that it has good encryption efficiency and perfect encryption effects. Also the transferring attack can be distributed equally by the algorithm which has high robustness, and good restoration result is produced.


Author(s):  
Showkat Ahmad Bhat ◽  
Amandeep Singh

Background & Objective: Digital multimedia exchange between different mobile communication devices has increased rapidly with the invention of the high-speed data services like LTE-A, LTE, and WiMAX. However, there are always certain security risks associated with the use of wireless communication technologies. Methods: To protect the digital images against cryptographic attacks different image encryption algorithms are being employed in the wireless communication networks. These algorithms use comparatively less key spaces and accordingly offer inadequate security. The proposed algorithm described in this paper based on Rubik’s cube principle because of its high confusion and diffusion properties, Arnold function having effective scrambling power, blocking cipher with block encryption and permutation powers. The main strength of the proposed algorithm lies in the large key spaces and the combination of different high power encryption techniques at each stage of algorithm. The different operations employed on the image are with four security keys of different key spaces at multiple stages of the algorithm. Results & Conclusion: Finally, the effectiveness and the security analysis results shows that the proposed image encryption algorithm attains high encryption and security capabilities along with high resistance against cryptanalytic attacks, differential attacks and statistical attacks.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 950
Author(s):  
Ziwen Pan ◽  
Ivan B. Djordjevic

Traditionally, the study of quantum key distribution (QKD) assumes an omnipotent eavesdropper that is only limited by the laws of physics. However, this is not the case for specific application scenarios such as the QKD over a free-space link. In this invited paper, we introduce the geometrical optics restricted eavesdropping model for secret key distillation security analysis and apply to a few scenarios common in satellite-to-satellite applications.


Sign in / Sign up

Export Citation Format

Share Document