Direction Selectivity Model Based on Lagged and Nonlagged Neurons

Author(s):  
Anton V. Chizhov ◽  
Elena G. Yakimova ◽  
Elena Y. Smirnova
1998 ◽  
Vol 10 (2) ◽  
pp. 353-371 ◽  
Author(s):  
Paul Mineiro ◽  
David Zipser

The relative contributions of feedforward and recurrent connectivity to the direction-selective responses of cells in layer IVB of primary visual cortex are currently the subject of debate in the neuroscience community. Recently, biophysically detailed simulations have shown that realistic direction-selective responses can be achieved via recurrent cortical interactions between cells with nondirection-selective feedforward input (Suarez et al., 1995; Maex & Orban, 1996). Unfortunately these models, while desirable for detailed comparison with biology, are complex and thus difficult to analyze mathematically. In this article, a relatively simple cortical dynamical model is used to analyze the emergence of direction-selective responses via recurrent interactions. A comparison between a model based on our analysis and physiological data is presented. The approach also allows analysis of the recurrently propagated signal, revealing the predictive nature of the implementation.


2020 ◽  
Vol 11 (36) ◽  
pp. 9937-9944
Author(s):  
Mengna Bai ◽  
Zhitao Feng ◽  
Jun Li ◽  
Dean J. Tantillo

A selectivity model based on the widths of pathways to competing products, rather than barrier heights, is formulated for the butadiene + allyl cation reaction.


2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


2001 ◽  
Vol 7 (S2) ◽  
pp. 578-579
Author(s):  
David W. Knowles ◽  
Sophie A. Lelièvre ◽  
Carlos Ortiz de Solόrzano ◽  
Stephen J. Lockett ◽  
Mina J. Bissell ◽  
...  

The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days.To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.


Author(s):  
Charles Bouveyron ◽  
Gilles Celeux ◽  
T. Brendan Murphy ◽  
Adrian E. Raftery

Author(s):  
Jonathan Jacky ◽  
Margus Veanes ◽  
Colin Campbell ◽  
Wolfram Schulte
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document