The Implementation of a Convolutional Neural Network for the Detection of the Transmission Towers Using Satellite Imagery

Author(s):  
Paweł Michalski ◽  
Bogdan Ruszczak ◽  
Pedro Javier Navarro Lorente
Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1592
Author(s):  
Jonguk Kim ◽  
Hyansu Bae ◽  
Hyunwoo Kang ◽  
Suk Gyu Lee

This paper suggests an algorithm for extracting the location of a building from satellite imagery and using that information to modify the roof content. The materials are determined by measuring the conditions where the building is located and detecting the position of a building in broad satellite images. Depending on the incomplete roof or material, there is a greater possibility of great damage caused by disaster situations or external shocks. To address these problems, we propose an algorithm to detect roofs and classify materials in satellite images. Satellite imaging locates areas where buildings are likely to exist based on roads. Using images of the detected buildings, we classify the material of the roof using a proposed convolutional neural network (CNN) model algorithm consisting of 43 layers. In this paper, we propose a CNN structure to detect areas with buildings in large images and classify roof materials in the detected areas.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253370
Author(s):  
Ethan Brewer ◽  
Jason Lin ◽  
Peter Kemper ◽  
John Hennin ◽  
Dan Runfola

Recognizing the importance of road infrastructure to promote human health and economic development, actors around the globe are regularly investing in both new roads and road improvements. However, in many contexts there is a sparsity—or complete lack—of accurate information regarding existing road infrastructure, challenging the effective identification of where investments should be made. Previous literature has focused on overcoming this gap through the use of satellite imagery to detect and map roads. In this piece, we extend this literature by leveraging satellite imagery to estimate road quality and concomitant information about travel speed. We adopt a transfer learning approach in which a convolutional neural network architecture is first trained on data collected in the United States (where data is readily available), and then “fine-tuned” on an independent, smaller dataset collected from Nigeria. We test and compare eight different convolutional neural network architectures using a dataset of 53,686 images of 2,400 kilometers of roads in the United States, in which each road segment is measured as “low”, “middle”, or “high” quality using an open, cellphone-based measuring platform. Using satellite imagery to estimate these classes, we achieve an accuracy of 80.0%, with 99.4% of predictions falling within the actual or an adjacent class. The highest performing base model was applied to a preliminary case study in Nigeria, using a dataset of 1,000 images of paved and unpaved roads. By tailoring our US-model on the basis of this Nigeria-specific data, we were able to achieve an accuracy of 94.0% in predicting the quality of Nigerian roads. A continuous case estimate also showed the ability, on average, to predict road quality to within 0.32 on a 0 to 3 scale (with higher values indicating higher levels of quality).


Sign in / Sign up

Export Citation Format

Share Document