scholarly journals CNN Algorithm for Roof Detection and Material Classification in Satellite Images

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1592
Author(s):  
Jonguk Kim ◽  
Hyansu Bae ◽  
Hyunwoo Kang ◽  
Suk Gyu Lee

This paper suggests an algorithm for extracting the location of a building from satellite imagery and using that information to modify the roof content. The materials are determined by measuring the conditions where the building is located and detecting the position of a building in broad satellite images. Depending on the incomplete roof or material, there is a greater possibility of great damage caused by disaster situations or external shocks. To address these problems, we propose an algorithm to detect roofs and classify materials in satellite images. Satellite imaging locates areas where buildings are likely to exist based on roads. Using images of the detected buildings, we classify the material of the roof using a proposed convolutional neural network (CNN) model algorithm consisting of 43 layers. In this paper, we propose a CNN structure to detect areas with buildings in large images and classify roof materials in the detected areas.

2020 ◽  
Vol 230 ◽  
pp. 117451 ◽  
Author(s):  
Tongshu Zheng ◽  
Michael H. Bergin ◽  
Shijia Hu ◽  
Joshua Miller ◽  
David E. Carlson

Author(s):  
L. Abraham ◽  
M. Sasikumar

In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2398 ◽  
Author(s):  
Bin Xie ◽  
Hankui K. Zhang ◽  
Jie Xue

In classification of satellite images acquired over smallholder agricultural landscape with complex spectral profiles of various crop types, exploring image spatial information is important. The deep convolutional neural network (CNN), originally designed for natural image recognition in the computer vision field, can automatically explore high level spatial information and thus is promising for such tasks. This study tried to evaluate different CNN structures for classification of four smallholder agricultural landscapes in Heilongjiang, China using pan-sharpened 2 m GaoFen-1 (meaning high resolution in Chinese) satellite images. CNN with three pooling strategies: without pooling, with max pooling and with average pooling, were evaluated and compared with random forest. Two different numbers (~70,000 and ~290,000) of CNN learnable parameters were examined for each pooling strategy. The training and testing samples were systematically sampled from reference land cover maps to ensure sample distribution proportional to the reference land cover occurrence and included 60,000–400,000 pixels to ensure effective training. Testing sample classification results in the four study areas showed that the best pooling strategy was the average pooling CNN and that the CNN significantly outperformed random forest (2.4–3.3% higher overall accuracy and 0.05–0.24 higher kappa coefficient). Visual examination of CNN classification maps showed that CNN can discriminate better the spectrally similar crop types by effectively exploring spatial information. CNN was still significantly outperformed random forest using training samples that were evenly distributed among classes. Furthermore, future research to improve CNN performance was discussed.


Sign in / Sign up

Export Citation Format

Share Document