A Method for Analyzing the Composition of Petrographic Thin Section Image

Author(s):  
Lanfang Dong ◽  
Zhongya Zhang
Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 336
Author(s):  
Rafael Pires de Lima ◽  
David Duarte

Convolutional neural networks (CNN) are currently the most widely used tool for the classification of images, especially if such images have large within- and small between- group variance. Thus, one of the main factors driving the development of CNN models is the creation of large, labelled computer vision datasets, some containing millions of images. Thanks to transfer learning, a technique that modifies a model trained on a primary task to execute a secondary task, the adaptation of CNN models trained on such large datasets has rapidly gained popularity in many fields of science, geosciences included. However, the trade-off between two main components of the transfer learning methodology for geoscience images is still unclear: the difference between the datasets used in the primary and secondary tasks; and the amount of available data for the primary task itself. We evaluate the performance of CNN models pretrained with different types of image datasets—specifically, dermatology, histology, and raw food—that are fine-tuned to the task of petrographic thin-section image classification. Results show that CNN models pretrained on ImageNet achieve higher accuracy due to the larger number of samples, as well as a larger variability in the samples in ImageNet compared to the other datasets evaluated.


Sign in / Sign up

Export Citation Format

Share Document